Information on Result #728117
Linear OA(3280, 1076, F32, 32) (dual of [1076, 996, 33]-code), using construction XX applied to C1 = C([1011,12]), C2 = C([0,19]), C3 = C1 + C2 = C([0,12]), and C∩ = C1 ∩ C2 = C([1011,19]) based on
- linear OA(3249, 1023, F32, 25) (dual of [1023, 974, 26]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {−12,−11,…,12}, and designed minimum distance d ≥ |I|+1 = 26 [i]
- linear OA(3239, 1023, F32, 20) (dual of [1023, 984, 21]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 1023 = 322−1, defining interval I = [0,19], and designed minimum distance d ≥ |I|+1 = 21 [i]
- linear OA(3263, 1023, F32, 32) (dual of [1023, 960, 33]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {−12,−11,…,19}, and designed minimum distance d ≥ |I|+1 = 33 [i]
- linear OA(3225, 1023, F32, 13) (dual of [1023, 998, 14]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 1023 = 322−1, defining interval I = [0,12], and designed minimum distance d ≥ |I|+1 = 14 [i]
- linear OA(3211, 33, F32, 11) (dual of [33, 22, 12]-code or 33-arc in PG(10,32)), using
- extended Reed–Solomon code RSe(22,32) [i]
- the expurgated narrow-sense BCH-code C(I) with length 33 | 322−1, defining interval I = [0,5], and minimum distance d ≥ |{−5,−4,…,5}|+1 = 12 (BCH-bound) [i]
- linear OA(326, 20, F32, 6) (dual of [20, 14, 7]-code or 20-arc in PG(5,32)), using
- discarding factors / shortening the dual code based on linear OA(326, 32, F32, 6) (dual of [32, 26, 7]-code or 32-arc in PG(5,32)), using
- Reed–Solomon code RS(26,32) [i]
- discarding factors / shortening the dual code based on linear OA(326, 32, F32, 6) (dual of [32, 26, 7]-code or 32-arc in PG(5,32)), using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.