Information on Result #728478

Linear OA(3261, 1033, F32, 30) (dual of [1033, 972, 31]-code), using construction XX applied to C1 = C([1020,25]), C2 = C([0,26]), C3 = C1 + C2 = C([0,25]), and C∩ = C1 ∩ C2 = C([1020,26]) based on
  1. linear OA(3257, 1023, F32, 29) (dual of [1023, 966, 30]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {−3,−2,…,25}, and designed minimum distance d ≥ |I|+1 = 30 [i]
  2. linear OA(3253, 1023, F32, 27) (dual of [1023, 970, 28]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 1023 = 322−1, defining interval I = [0,26], and designed minimum distance d ≥ |I|+1 = 28 [i]
  3. linear OA(3259, 1023, F32, 30) (dual of [1023, 964, 31]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {−3,−2,…,26}, and designed minimum distance d ≥ |I|+1 = 31 [i]
  4. linear OA(3251, 1023, F32, 26) (dual of [1023, 972, 27]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 1023 = 322−1, defining interval I = [0,25], and designed minimum distance d ≥ |I|+1 = 27 [i]
  5. linear OA(322, 8, F32, 2) (dual of [8, 6, 3]-code or 8-arc in PG(1,32)), using
  6. linear OA(320, 2, F32, 0) (dual of [2, 2, 1]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1OA(8102, 1033, S8, 30) [i]Discarding Parts of the Base for OAs
2OA(1677, 1033, S16, 30) [i]