Information on Result #728683
Linear OA(3261, 1027, F32, 31) (dual of [1027, 966, 32]-code), using construction XX applied to C1 = C([1022,28]), C2 = C([0,29]), C3 = C1 + C2 = C([0,28]), and C∩ = C1 ∩ C2 = C([1022,29]) based on
- linear OA(3259, 1023, F32, 30) (dual of [1023, 964, 31]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {−1,0,…,28}, and designed minimum distance d ≥ |I|+1 = 31 [i]
- linear OA(3259, 1023, F32, 30) (dual of [1023, 964, 31]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 1023 = 322−1, defining interval I = [0,29], and designed minimum distance d ≥ |I|+1 = 31 [i]
- linear OA(3261, 1023, F32, 31) (dual of [1023, 962, 32]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {−1,0,…,29}, and designed minimum distance d ≥ |I|+1 = 32 [i]
- linear OA(3257, 1023, F32, 29) (dual of [1023, 966, 30]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 1023 = 322−1, defining interval I = [0,28], and designed minimum distance d ≥ |I|+1 = 30 [i]
- linear OA(320, 2, F32, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(320, s, F32, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(320, 2, F32, 0) (dual of [2, 2, 1]-code) (see above)
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | OA(8102, 1027, S8, 31) | [i] | Discarding Parts of the Base for OAs | |
2 | OA(1677, 1027, S16, 31) | [i] | ||
3 | Linear OA(3279, 1091, F32, 31) (dual of [1091, 1012, 32]-code) | [i] | (u, u+v)-Construction | |
4 | Linear OA(3280, 1093, F32, 31) (dual of [1093, 1013, 32]-code) | [i] | ||
5 | Linear OA(3281, 1103, F32, 31) (dual of [1103, 1022, 32]-code) | [i] | ||
6 | Linear OA(3282, 1105, F32, 31) (dual of [1105, 1023, 32]-code) | [i] | ||
7 | Linear OA(3283, 1125, F32, 31) (dual of [1125, 1042, 32]-code) | [i] | ||
8 | Linear OA(3284, 1127, F32, 31) (dual of [1127, 1043, 32]-code) | [i] | ||
9 | Linear OA(3285, 1131, F32, 31) (dual of [1131, 1046, 32]-code) | [i] | ||
10 | Linear OA(3286, 1133, F32, 31) (dual of [1133, 1047, 32]-code) | [i] | ||
11 | Linear OA(3287, 1147, F32, 31) (dual of [1147, 1060, 32]-code) | [i] | ||
12 | Linear OA(3288, 1149, F32, 31) (dual of [1149, 1061, 32]-code) | [i] | ||
13 | Linear OA(3289, 1372, F32, 31) (dual of [1372, 1283, 32]-code) | [i] | ||
14 | Linear OA(3290, 2054, F32, 31) (dual of [2054, 1964, 32]-code) | [i] | ||
15 | Linear OA(3267, 1058, F32, 31) (dual of [1058, 991, 32]-code) | [i] | Varšamov–Edel Lengthening | |
16 | Linear OA(3268, 1094, F32, 31) (dual of [1094, 1026, 32]-code) | [i] | ||
17 | Linear OA(3269, 1167, F32, 31) (dual of [1167, 1098, 32]-code) | [i] | ||
18 | Linear OA(3270, 1283, F32, 31) (dual of [1283, 1213, 32]-code) | [i] |