Information on Result #728815
Linear OA(32105, 1076, F32, 45) (dual of [1076, 971, 46]-code), using construction XX applied to C1 = C([1019,33]), C2 = C([10,40]), C3 = C1 + C2 = C([10,33]), and C∩ = C1 ∩ C2 = C([1019,40]) based on
- linear OA(3272, 1023, F32, 38) (dual of [1023, 951, 39]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {−4,−3,…,33}, and designed minimum distance d ≥ |I|+1 = 39 [i]
- linear OA(3261, 1023, F32, 31) (dual of [1023, 962, 32]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {10,11,…,40}, and designed minimum distance d ≥ |I|+1 = 32 [i]
- linear OA(3286, 1023, F32, 45) (dual of [1023, 937, 46]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {−4,−3,…,40}, and designed minimum distance d ≥ |I|+1 = 46 [i]
- linear OA(3247, 1023, F32, 24) (dual of [1023, 976, 25]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {10,11,…,33}, and designed minimum distance d ≥ |I|+1 = 25 [i]
- linear OA(3213, 33, F32, 13) (dual of [33, 20, 14]-code or 33-arc in PG(12,32)), using
- extended Reed–Solomon code RSe(20,32) [i]
- the expurgated narrow-sense BCH-code C(I) with length 33 | 322−1, defining interval I = [0,6], and minimum distance d ≥ |{−6,−5,…,6}|+1 = 14 (BCH-bound) [i]
- linear OA(326, 20, F32, 6) (dual of [20, 14, 7]-code or 20-arc in PG(5,32)), using
- discarding factors / shortening the dual code based on linear OA(326, 32, F32, 6) (dual of [32, 26, 7]-code or 32-arc in PG(5,32)), using
- Reed–Solomon code RS(26,32) [i]
- discarding factors / shortening the dual code based on linear OA(326, 32, F32, 6) (dual of [32, 26, 7]-code or 32-arc in PG(5,32)), using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.