Information on Result #728858
Linear OA(3295, 1057, F32, 44) (dual of [1057, 962, 45]-code), using construction XX applied to C1 = C([1014,33]), C2 = C([3,34]), C3 = C1 + C2 = C([3,33]), and C∩ = C1 ∩ C2 = C([1014,34]) based on
- linear OA(3282, 1023, F32, 43) (dual of [1023, 941, 44]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {−9,−8,…,33}, and designed minimum distance d ≥ |I|+1 = 44 [i]
- linear OA(3263, 1023, F32, 32) (dual of [1023, 960, 33]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {3,4,…,34}, and designed minimum distance d ≥ |I|+1 = 33 [i]
- linear OA(3284, 1023, F32, 44) (dual of [1023, 939, 45]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {−9,−8,…,34}, and designed minimum distance d ≥ |I|+1 = 45 [i]
- linear OA(3261, 1023, F32, 31) (dual of [1023, 962, 32]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {3,4,…,33}, and designed minimum distance d ≥ |I|+1 = 32 [i]
- linear OA(3211, 32, F32, 11) (dual of [32, 21, 12]-code or 32-arc in PG(10,32)), using
- Reed–Solomon code RS(21,32) [i]
- linear OA(320, 2, F32, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(320, s, F32, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | OA(16119, 1057, S16, 44) | [i] | Discarding Parts of the Base for OAs | |
2 | Linear OOA(3295, 528, F32, 2, 44) (dual of [(528, 2), 961, 45]-NRT-code) | [i] | OOA Folding |