Information on Result #728892
Linear OA(32108, 1078, F32, 46) (dual of [1078, 970, 47]-code), using construction XX applied to C1 = C([1018,32]), C2 = C([9,40]), C3 = C1 + C2 = C([9,32]), and C∩ = C1 ∩ C2 = C([1018,40]) based on
- linear OA(3273, 1023, F32, 38) (dual of [1023, 950, 39]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {−5,−4,…,32}, and designed minimum distance d ≥ |I|+1 = 39 [i]
- linear OA(3263, 1023, F32, 32) (dual of [1023, 960, 33]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {9,10,…,40}, and designed minimum distance d ≥ |I|+1 = 33 [i]
- linear OA(3288, 1023, F32, 46) (dual of [1023, 935, 47]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {−5,−4,…,40}, and designed minimum distance d ≥ |I|+1 = 47 [i]
- linear OA(3248, 1023, F32, 24) (dual of [1023, 975, 25]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {9,10,…,32}, and designed minimum distance d ≥ |I|+1 = 25 [i]
- linear OA(3213, 33, F32, 13) (dual of [33, 20, 14]-code or 33-arc in PG(12,32)), using
- extended Reed–Solomon code RSe(20,32) [i]
- the expurgated narrow-sense BCH-code C(I) with length 33 | 322−1, defining interval I = [0,6], and minimum distance d ≥ |{−6,−5,…,6}|+1 = 14 (BCH-bound) [i]
- linear OA(327, 22, F32, 7) (dual of [22, 15, 8]-code or 22-arc in PG(6,32)), using
- discarding factors / shortening the dual code based on linear OA(327, 32, F32, 7) (dual of [32, 25, 8]-code or 32-arc in PG(6,32)), using
- Reed–Solomon code RS(25,32) [i]
- discarding factors / shortening the dual code based on linear OA(327, 32, F32, 7) (dual of [32, 25, 8]-code or 32-arc in PG(6,32)), using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.