Information on Result #728906
Linear OA(32110, 1084, F32, 46) (dual of [1084, 974, 47]-code), using construction XX applied to C1 = C([1020,32]), C2 = C([11,42]), C3 = C1 + C2 = C([11,32]), and C∩ = C1 ∩ C2 = C([1020,42]) based on
- linear OA(3269, 1023, F32, 36) (dual of [1023, 954, 37]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {−3,−2,…,32}, and designed minimum distance d ≥ |I|+1 = 37 [i]
- linear OA(3263, 1023, F32, 32) (dual of [1023, 960, 33]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {11,12,…,42}, and designed minimum distance d ≥ |I|+1 = 33 [i]
- linear OA(3288, 1023, F32, 46) (dual of [1023, 935, 47]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {−3,−2,…,42}, and designed minimum distance d ≥ |I|+1 = 47 [i]
- linear OA(3244, 1023, F32, 22) (dual of [1023, 979, 23]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {11,12,…,32}, and designed minimum distance d ≥ |I|+1 = 23 [i]
- linear OA(3213, 33, F32, 13) (dual of [33, 20, 14]-code or 33-arc in PG(12,32)), using
- extended Reed–Solomon code RSe(20,32) [i]
- the expurgated narrow-sense BCH-code C(I) with length 33 | 322−1, defining interval I = [0,6], and minimum distance d ≥ |{−6,−5,…,6}|+1 = 14 (BCH-bound) [i]
- linear OA(329, 28, F32, 9) (dual of [28, 19, 10]-code or 28-arc in PG(8,32)), using
- discarding factors / shortening the dual code based on linear OA(329, 32, F32, 9) (dual of [32, 23, 10]-code or 32-arc in PG(8,32)), using
- Reed–Solomon code RS(23,32) [i]
- discarding factors / shortening the dual code based on linear OA(329, 32, F32, 9) (dual of [32, 23, 10]-code or 32-arc in PG(8,32)), using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.