Information on Result #729162
Linear OA(32110, 1061, F32, 51) (dual of [1061, 951, 52]-code), using construction XX applied to C1 = C([1011,36]), C2 = C([0,38]), C3 = C1 + C2 = C([0,36]), and C∩ = C1 ∩ C2 = C([1011,38]) based on
- linear OA(3294, 1023, F32, 49) (dual of [1023, 929, 50]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {−12,−11,…,36}, and designed minimum distance d ≥ |I|+1 = 50 [i]
- linear OA(3274, 1023, F32, 39) (dual of [1023, 949, 40]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 1023 = 322−1, defining interval I = [0,38], and designed minimum distance d ≥ |I|+1 = 40 [i]
- linear OA(3298, 1023, F32, 51) (dual of [1023, 925, 52]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {−12,−11,…,38}, and designed minimum distance d ≥ |I|+1 = 52 [i]
- linear OA(3270, 1023, F32, 37) (dual of [1023, 953, 38]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 1023 = 322−1, defining interval I = [0,36], and designed minimum distance d ≥ |I|+1 = 38 [i]
- linear OA(3211, 33, F32, 11) (dual of [33, 22, 12]-code or 33-arc in PG(10,32)), using
- extended Reed–Solomon code RSe(22,32) [i]
- the expurgated narrow-sense BCH-code C(I) with length 33 | 322−1, defining interval I = [0,5], and minimum distance d ≥ |{−5,−4,…,5}|+1 = 12 (BCH-bound) [i]
- linear OA(321, 5, F32, 1) (dual of [5, 4, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(321, 32, F32, 1) (dual of [32, 31, 2]-code), using
- Reed–Solomon code RS(31,32) [i]
- discarding factors / shortening the dual code based on linear OA(321, 32, F32, 1) (dual of [32, 31, 2]-code), using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.