Information on Result #729505
Linear OA(4948, 157, F49, 28) (dual of [157, 109, 29]-code), using construction XX applied to C1 = C([13,39]), C2 = C([12,37]), C3 = C1 + C2 = C([13,37]), and C∩ = C1 ∩ C2 = C([12,39]) based on
- linear OA(4945, 150, F49, 27) (dual of [150, 105, 28]-code), using the BCH-code C(I) with length 150 | 492−1, defining interval I = {13,14,…,39}, and designed minimum distance d ≥ |I|+1 = 28 [i]
- linear OA(4943, 150, F49, 26) (dual of [150, 107, 27]-code), using the BCH-code C(I) with length 150 | 492−1, defining interval I = {12,13,…,37}, and designed minimum distance d ≥ |I|+1 = 27 [i]
- linear OA(4947, 150, F49, 28) (dual of [150, 103, 29]-code), using the BCH-code C(I) with length 150 | 492−1, defining interval I = {12,13,…,39}, and designed minimum distance d ≥ |I|+1 = 29 [i]
- linear OA(4941, 150, F49, 25) (dual of [150, 109, 26]-code), using the BCH-code C(I) with length 150 | 492−1, defining interval I = {13,14,…,37}, and designed minimum distance d ≥ |I|+1 = 26 [i]
- linear OA(491, 5, F49, 1) (dual of [5, 4, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(491, 49, F49, 1) (dual of [49, 48, 2]-code), using
- Reed–Solomon code RS(48,49) [i]
- discarding factors / shortening the dual code based on linear OA(491, 49, F49, 1) (dual of [49, 48, 2]-code), using
- linear OA(490, 2, F49, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(490, s, F49, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(4948, 78, F49, 2, 28) (dual of [(78, 2), 108, 29]-NRT-code) | [i] | OOA Folding |