Information on Result #730809
Linear OA(25625, 775, F256, 15) (dual of [775, 750, 16]-code), using construction XX applied to C1 = C([251,264]), C2 = C([250,263]), C3 = C1 + C2 = C([251,263]), and C∩ = C1 ∩ C2 = C([250,264]) based on
- linear OA(25623, 771, F256, 14) (dual of [771, 748, 15]-code), using the BCH-code C(I) with length 771 | 2562−1, defining interval I = {251,252,…,264}, and designed minimum distance d ≥ |I|+1 = 15 [i]
- linear OA(25623, 771, F256, 14) (dual of [771, 748, 15]-code), using the BCH-code C(I) with length 771 | 2562−1, defining interval I = {250,251,…,263}, and designed minimum distance d ≥ |I|+1 = 15 [i]
- linear OA(25625, 771, F256, 15) (dual of [771, 746, 16]-code), using the BCH-code C(I) with length 771 | 2562−1, defining interval I = {250,251,…,264}, and designed minimum distance d ≥ |I|+1 = 16 [i]
- linear OA(25621, 771, F256, 13) (dual of [771, 750, 14]-code), using the BCH-code C(I) with length 771 | 2562−1, defining interval I = {251,252,…,263}, and designed minimum distance d ≥ |I|+1 = 14 [i]
- linear OA(2560, 2, F256, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(2560, s, F256, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(2560, 2, F256, 0) (dual of [2, 2, 1]-code) (see above)
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(25626, 790, F256, 15) (dual of [790, 764, 16]-code) | [i] | Varšamov–Edel Lengthening | |
2 | Linear OA(25626, 777, F256, 15) (dual of [777, 751, 16]-code) | [i] | Construction X with Varšamov Bound | |
3 | Linear OOA(25625, 387, F256, 2, 15) (dual of [(387, 2), 749, 16]-NRT-code) | [i] | OOA Folding |