Information on Result #731728

Linear OA(3154, 170, F3, 85) (dual of [170, 16, 86]-code), using juxtaposition based on
  1. linear OA(366, 82, F3, 41) (dual of [82, 16, 42]-code), using
    • contraction [i] based on linear OA(3148, 164, F3, 83) (dual of [164, 16, 84]-code), using the BCH-code C(I) with length 164 | 38−1, defining interval I = {0,1,…,82}, and designed minimum distance d ≥ |I|+1 = 84 [i]
  2. linear OA(372, 88, F3, 43) (dual of [88, 16, 44]-code), using
    • construction XX applied to Ce(43) ⊂ Ce(40) ⊂ Ce(39) [i] based on
      1. linear OA(370, 81, F3, 44) (dual of [81, 11, 45]-code), using an extension Ce(43) of the primitive narrow-sense BCH-code C(I) with length 80 = 34−1, defining interval I = [1,43], and designed minimum distance d ≥ |I|+1 = 44 [i]
      2. linear OA(366, 81, F3, 41) (dual of [81, 15, 42]-code), using an extension Ce(40) of the primitive narrow-sense BCH-code C(I) with length 80 = 34−1, defining interval I = [1,40], and designed minimum distance d ≥ |I|+1 = 41 [i]
      3. linear OA(365, 81, F3, 40) (dual of [81, 16, 41]-code), using an extension Ce(39) of the primitive narrow-sense BCH-code C(I) with length 80 = 34−1, defining interval I = [1,39], and designed minimum distance d ≥ |I|+1 = 40 [i]
      4. linear OA(31, 6, F3, 1) (dual of [6, 5, 2]-code), using
      5. linear OA(30, 1, F3, 0) (dual of [1, 1, 1]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.