Information on Result #732322

Linear OA(2597, 756, F25, 36) (dual of [756, 659, 37]-code), using (u, u+v)-construction based on
  1. linear OA(2529, 128, F25, 18) (dual of [128, 99, 19]-code), using
  2. linear OA(2568, 628, F25, 36) (dual of [628, 560, 37]-code), using
    • construction XX applied to C1 = C([623,33]), C2 = C([0,34]), C3 = C1 + C2 = C([0,33]), and C∩ = C1 ∩ C2 = C([623,34]) [i] based on
      1. linear OA(2566, 624, F25, 35) (dual of [624, 558, 36]-code), using the primitive BCH-code C(I) with length 624 = 252−1, defining interval I = {−1,0,…,33}, and designed minimum distance d ≥ |I|+1 = 36 [i]
      2. linear OA(2566, 624, F25, 35) (dual of [624, 558, 36]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 624 = 252−1, defining interval I = [0,34], and designed minimum distance d ≥ |I|+1 = 36 [i]
      3. linear OA(2568, 624, F25, 36) (dual of [624, 556, 37]-code), using the primitive BCH-code C(I) with length 624 = 252−1, defining interval I = {−1,0,…,34}, and designed minimum distance d ≥ |I|+1 = 37 [i]
      4. linear OA(2564, 624, F25, 34) (dual of [624, 560, 35]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 624 = 252−1, defining interval I = [0,33], and designed minimum distance d ≥ |I|+1 = 35 [i]
      5. linear OA(250, 2, F25, 0) (dual of [2, 2, 1]-code), using
      6. linear OA(250, 2, F25, 0) (dual of [2, 2, 1]-code) (see above)

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(2597, 378, F25, 2, 36) (dual of [(378, 2), 659, 37]-NRT-code) [i]OOA Folding