Information on Result #732400

Linear OA(2589, 756, F25, 33) (dual of [756, 667, 34]-code), using (u, u+v)-construction based on
  1. linear OA(2527, 128, F25, 16) (dual of [128, 101, 17]-code), using
  2. linear OA(2562, 628, F25, 33) (dual of [628, 566, 34]-code), using
    • construction XX applied to C1 = C([623,30]), C2 = C([0,31]), C3 = C1 + C2 = C([0,30]), and C∩ = C1 ∩ C2 = C([623,31]) [i] based on
      1. linear OA(2560, 624, F25, 32) (dual of [624, 564, 33]-code), using the primitive BCH-code C(I) with length 624 = 252−1, defining interval I = {−1,0,…,30}, and designed minimum distance d ≥ |I|+1 = 33 [i]
      2. linear OA(2560, 624, F25, 32) (dual of [624, 564, 33]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 624 = 252−1, defining interval I = [0,31], and designed minimum distance d ≥ |I|+1 = 33 [i]
      3. linear OA(2562, 624, F25, 33) (dual of [624, 562, 34]-code), using the primitive BCH-code C(I) with length 624 = 252−1, defining interval I = {−1,0,…,31}, and designed minimum distance d ≥ |I|+1 = 34 [i]
      4. linear OA(2558, 624, F25, 31) (dual of [624, 566, 32]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 624 = 252−1, defining interval I = [0,30], and designed minimum distance d ≥ |I|+1 = 32 [i]
      5. linear OA(250, 2, F25, 0) (dual of [2, 2, 1]-code), using
      6. linear OA(250, 2, F25, 0) (dual of [2, 2, 1]-code) (see above)

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(2589, 378, F25, 2, 33) (dual of [(378, 2), 667, 34]-NRT-code) [i]OOA Folding