Information on Result #732715
Linear OA(25105, 390841, F25, 22) (dual of [390841, 390736, 23]-code), using (u, u+v)-construction based on
- linear OA(2520, 212, F25, 11) (dual of [212, 192, 12]-code), using
- construction XX applied to C1 = C([9,18]), C2 = C([8,17]), C3 = C1 + C2 = C([9,17]), and C∩ = C1 ∩ C2 = C([8,18]) [i] based on
- linear OA(2518, 208, F25, 10) (dual of [208, 190, 11]-code), using the BCH-code C(I) with length 208 | 252−1, defining interval I = {9,10,…,18}, and designed minimum distance d ≥ |I|+1 = 11 [i]
- linear OA(2518, 208, F25, 10) (dual of [208, 190, 11]-code), using the BCH-code C(I) with length 208 | 252−1, defining interval I = {8,9,…,17}, and designed minimum distance d ≥ |I|+1 = 11 [i]
- linear OA(2520, 208, F25, 11) (dual of [208, 188, 12]-code), using the BCH-code C(I) with length 208 | 252−1, defining interval I = {8,9,…,18}, and designed minimum distance d ≥ |I|+1 = 12 [i]
- linear OA(2516, 208, F25, 9) (dual of [208, 192, 10]-code), using the BCH-code C(I) with length 208 | 252−1, defining interval I = {9,10,…,17}, and designed minimum distance d ≥ |I|+1 = 10 [i]
- linear OA(250, 2, F25, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(250, s, F25, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(250, 2, F25, 0) (dual of [2, 2, 1]-code) (see above)
- construction XX applied to C1 = C([9,18]), C2 = C([8,17]), C3 = C1 + C2 = C([9,17]), and C∩ = C1 ∩ C2 = C([8,18]) [i] based on
- linear OA(2585, 390629, F25, 22) (dual of [390629, 390544, 23]-code), using
- construction X applied to Ce(21) ⊂ Ce(20) [i] based on
- linear OA(2585, 390625, F25, 22) (dual of [390625, 390540, 23]-code), using an extension Ce(21) of the primitive narrow-sense BCH-code C(I) with length 390624 = 254−1, defining interval I = [1,21], and designed minimum distance d ≥ |I|+1 = 22 [i]
- linear OA(2581, 390625, F25, 21) (dual of [390625, 390544, 22]-code), using an extension Ce(20) of the primitive narrow-sense BCH-code C(I) with length 390624 = 254−1, defining interval I = [1,20], and designed minimum distance d ≥ |I|+1 = 21 [i]
- linear OA(250, 4, F25, 0) (dual of [4, 4, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(250, s, F25, 0) (dual of [s, s, 1]-code) for arbitrarily large s (see above)
- construction X applied to Ce(21) ⊂ Ce(20) [i] based on
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(25105, 195420, F25, 2, 22) (dual of [(195420, 2), 390735, 23]-NRT-code) | [i] | OOA Folding | |
2 | Linear OOA(25105, 35531, F25, 22, 22) (dual of [(35531, 22), 781577, 23]-NRT-code) | [i] | OA Folding and Stacking |