Information on Result #733518

Linear OA(2736, 760, F27, 15) (dual of [760, 724, 16]-code), using (u, u+v)-construction based on
  1. linear OA(277, 28, F27, 7) (dual of [28, 21, 8]-code or 28-arc in PG(6,27)), using
  2. linear OA(2729, 732, F27, 15) (dual of [732, 703, 16]-code), using
    • construction XX applied to C1 = C([727,12]), C2 = C([0,13]), C3 = C1 + C2 = C([0,12]), and C∩ = C1 ∩ C2 = C([727,13]) [i] based on
      1. linear OA(2727, 728, F27, 14) (dual of [728, 701, 15]-code), using the primitive BCH-code C(I) with length 728 = 272−1, defining interval I = {−1,0,…,12}, and designed minimum distance d ≥ |I|+1 = 15 [i]
      2. linear OA(2727, 728, F27, 14) (dual of [728, 701, 15]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 728 = 272−1, defining interval I = [0,13], and designed minimum distance d ≥ |I|+1 = 15 [i]
      3. linear OA(2729, 728, F27, 15) (dual of [728, 699, 16]-code), using the primitive BCH-code C(I) with length 728 = 272−1, defining interval I = {−1,0,…,13}, and designed minimum distance d ≥ |I|+1 = 16 [i]
      4. linear OA(2725, 728, F27, 13) (dual of [728, 703, 14]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 728 = 272−1, defining interval I = [0,12], and designed minimum distance d ≥ |I|+1 = 14 [i]
      5. linear OA(270, 2, F27, 0) (dual of [2, 2, 1]-code), using
      6. linear OA(270, 2, F27, 0) (dual of [2, 2, 1]-code) (see above)

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(2736, 380, F27, 2, 15) (dual of [(380, 2), 724, 16]-NRT-code) [i]OOA Folding