Information on Result #733969

Linear OA(3274, 1135, F32, 26) (dual of [1135, 1061, 27]-code), using (u, u+v)-construction based on
  1. linear OA(3223, 108, F32, 13) (dual of [108, 85, 14]-code), using
  2. linear OA(3251, 1027, F32, 26) (dual of [1027, 976, 27]-code), using
    • construction XX applied to C1 = C([1022,23]), C2 = C([0,24]), C3 = C1 + C2 = C([0,23]), and C∩ = C1 ∩ C2 = C([1022,24]) [i] based on
      1. linear OA(3249, 1023, F32, 25) (dual of [1023, 974, 26]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {−1,0,…,23}, and designed minimum distance d ≥ |I|+1 = 26 [i]
      2. linear OA(3249, 1023, F32, 25) (dual of [1023, 974, 26]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 1023 = 322−1, defining interval I = [0,24], and designed minimum distance d ≥ |I|+1 = 26 [i]
      3. linear OA(3251, 1023, F32, 26) (dual of [1023, 972, 27]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {−1,0,…,24}, and designed minimum distance d ≥ |I|+1 = 27 [i]
      4. linear OA(3247, 1023, F32, 24) (dual of [1023, 976, 25]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 1023 = 322−1, defining interval I = [0,23], and designed minimum distance d ≥ |I|+1 = 25 [i]
      5. linear OA(320, 2, F32, 0) (dual of [2, 2, 1]-code), using
      6. linear OA(320, 2, F32, 0) (dual of [2, 2, 1]-code) (see above)

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(3274, 567, F32, 2, 26) (dual of [(567, 2), 1060, 27]-NRT-code) [i]OOA Folding