Information on Result #734135
Linear OA(3260, 2054, F32, 21) (dual of [2054, 1994, 22]-code), using (u, u+v)-construction based on
- linear OA(3219, 1027, F32, 10) (dual of [1027, 1008, 11]-code), using
- construction XX applied to C1 = C([1022,7]), C2 = C([0,8]), C3 = C1 + C2 = C([0,7]), and C∩ = C1 ∩ C2 = C([1022,8]) [i] based on
- linear OA(3217, 1023, F32, 9) (dual of [1023, 1006, 10]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {−1,0,…,7}, and designed minimum distance d ≥ |I|+1 = 10 [i]
- linear OA(3217, 1023, F32, 9) (dual of [1023, 1006, 10]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 1023 = 322−1, defining interval I = [0,8], and designed minimum distance d ≥ |I|+1 = 10 [i]
- linear OA(3219, 1023, F32, 10) (dual of [1023, 1004, 11]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {−1,0,…,8}, and designed minimum distance d ≥ |I|+1 = 11 [i]
- linear OA(3215, 1023, F32, 8) (dual of [1023, 1008, 9]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 1023 = 322−1, defining interval I = [0,7], and designed minimum distance d ≥ |I|+1 = 9 [i]
- linear OA(320, 2, F32, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(320, s, F32, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(320, 2, F32, 0) (dual of [2, 2, 1]-code) (see above)
- construction XX applied to C1 = C([1022,7]), C2 = C([0,8]), C3 = C1 + C2 = C([0,7]), and C∩ = C1 ∩ C2 = C([1022,8]) [i] based on
- linear OA(3241, 1027, F32, 21) (dual of [1027, 986, 22]-code), using
- construction XX applied to C1 = C([1022,18]), C2 = C([0,19]), C3 = C1 + C2 = C([0,18]), and C∩ = C1 ∩ C2 = C([1022,19]) [i] based on
- linear OA(3239, 1023, F32, 20) (dual of [1023, 984, 21]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {−1,0,…,18}, and designed minimum distance d ≥ |I|+1 = 21 [i]
- linear OA(3239, 1023, F32, 20) (dual of [1023, 984, 21]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 1023 = 322−1, defining interval I = [0,19], and designed minimum distance d ≥ |I|+1 = 21 [i]
- linear OA(3241, 1023, F32, 21) (dual of [1023, 982, 22]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {−1,0,…,19}, and designed minimum distance d ≥ |I|+1 = 22 [i]
- linear OA(3237, 1023, F32, 19) (dual of [1023, 986, 20]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 1023 = 322−1, defining interval I = [0,18], and designed minimum distance d ≥ |I|+1 = 20 [i]
- linear OA(320, 2, F32, 0) (dual of [2, 2, 1]-code) (see above)
- linear OA(320, 2, F32, 0) (dual of [2, 2, 1]-code) (see above)
- construction XX applied to C1 = C([1022,18]), C2 = C([0,19]), C3 = C1 + C2 = C([0,18]), and C∩ = C1 ∩ C2 = C([1022,19]) [i] based on
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(3260, 1027, F32, 2, 21) (dual of [(1027, 2), 1994, 22]-NRT-code) | [i] | OOA Folding | |
2 | Linear OOA(3260, 205, F32, 21, 21) (dual of [(205, 21), 4245, 22]-NRT-code) | [i] | OOA Folding and Stacking with Additional Row |