Information on Result #737289
Linear OA(4248, 16477, F4, 42) (dual of [16477, 16229, 43]-code), using construction X applied to Ce(41) ⊂ Ce(29) based on
- linear OA(4218, 16384, F4, 42) (dual of [16384, 16166, 43]-code), using an extension Ce(41) of the primitive narrow-sense BCH-code C(I) with length 16383 = 47−1, defining interval I = [1,41], and designed minimum distance d ≥ |I|+1 = 42 [i]
- linear OA(4155, 16384, F4, 30) (dual of [16384, 16229, 31]-code), using an extension Ce(29) of the primitive narrow-sense BCH-code C(I) with length 16383 = 47−1, defining interval I = [1,29], and designed minimum distance d ≥ |I|+1 = 30 [i]
- linear OA(430, 93, F4, 11) (dual of [93, 63, 12]-code), using
- construction XX applied to C1 = C({2,5,6,14,17,21,57}), C2 = C({2,5,6,7,14,17,21}), C3 = C1 + C2 = C({2,5,6,14,17,21}), and C∩ = C1 ∩ C2 = C({2,5,6,7,14,17,21,57}) [i] based on
- linear OA(426, 85, F4, 10) (dual of [85, 59, 11]-code), using the cyclic code C(A) with length 85 | 44−1, defining set A = {2,5,6,14,17,21,57}, and minimum distance d ≥ |{−7,−4,−1,…,20}|+1 = 11 (BCH-bound) [i]
- linear OA(426, 85, F4, 10) (dual of [85, 59, 11]-code), using the cyclic code C(A) with length 85 | 44−1, defining set A = {2,5,6,7,14,17,21}, and minimum distance d ≥ |{−4,−1,2,…,23}|+1 = 11 (BCH-bound) [i]
- linear OA(430, 85, F4, 11) (dual of [85, 55, 12]-code), using the cyclic code C(A) with length 85 | 44−1, defining set A = {2,5,6,7,14,17,21,57}, and minimum distance d ≥ |{−7,−4,−1,…,23}|+1 = 12 (BCH-bound) [i]
- linear OA(422, 85, F4, 9) (dual of [85, 63, 10]-code), using the cyclic code C(A) with length 85 | 44−1, defining set A = {2,5,6,14,17,21}, and minimum distance d ≥ |{−4,−1,2,…,20}|+1 = 10 (BCH-bound) [i]
- linear OA(40, 4, F4, 0) (dual of [4, 4, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(40, s, F4, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(40, 4, F4, 0) (dual of [4, 4, 1]-code) (see above)
- construction XX applied to C1 = C({2,5,6,14,17,21,57}), C2 = C({2,5,6,7,14,17,21}), C3 = C1 + C2 = C({2,5,6,14,17,21}), and C∩ = C1 ∩ C2 = C({2,5,6,7,14,17,21,57}) [i] based on
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(4248, 8238, F4, 2, 42) (dual of [(8238, 2), 16228, 43]-NRT-code) | [i] | OOA Folding | |
2 | Linear OOA(4248, 5492, F4, 3, 42) (dual of [(5492, 3), 16228, 43]-NRT-code) | [i] |