Information on Result #808589
Linear OOA(2193, 286, F2, 2, 40) (dual of [(286, 2), 379, 41]-NRT-code), using OOA 2-folding based on linear OA(2193, 572, F2, 40) (dual of [572, 379, 41]-code), using
- 1 times truncation [i] based on linear OA(2194, 573, F2, 41) (dual of [573, 379, 42]-code), using
- construction XX applied to C1 = C([505,28]), C2 = C([0,34]), C3 = C1 + C2 = C([0,28]), and C∩ = C1 ∩ C2 = C([505,34]) [i] based on
- linear OA(2154, 511, F2, 35) (dual of [511, 357, 36]-code), using the primitive BCH-code C(I) with length 511 = 29−1, defining interval I = {−6,−5,…,28}, and designed minimum distance d ≥ |I|+1 = 36 [i]
- linear OA(2145, 511, F2, 35) (dual of [511, 366, 36]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 511 = 29−1, defining interval I = [0,34], and designed minimum distance d ≥ |I|+1 = 36 [i]
- linear OA(2172, 511, F2, 41) (dual of [511, 339, 42]-code), using the primitive BCH-code C(I) with length 511 = 29−1, defining interval I = {−6,−5,…,34}, and designed minimum distance d ≥ |I|+1 = 42 [i]
- linear OA(2127, 511, F2, 29) (dual of [511, 384, 30]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 511 = 29−1, defining interval I = [0,28], and designed minimum distance d ≥ |I|+1 = 30 [i]
- linear OA(211, 33, F2, 5) (dual of [33, 22, 6]-code), using
- the expurgated narrow-sense BCH-code C(I) with length 33 | 210−1, defining interval I = [0,2], and minimum distance d ≥ |{−2,−1,0,1,2}|+1 = 6 (BCH-bound) [i]
- linear OA(211, 29, F2, 5) (dual of [29, 18, 6]-code), using
- discarding factors / shortening the dual code based on linear OA(211, 32, F2, 5) (dual of [32, 21, 6]-code), using
- an extension Ce(4) of the primitive narrow-sense BCH-code C(I) with length 31 = 25−1, defining interval I = [1,4], and designed minimum distance d ≥ |I|+1 = 5 [i]
- discarding factors / shortening the dual code based on linear OA(211, 32, F2, 5) (dual of [32, 21, 6]-code), using
- construction XX applied to C1 = C([505,28]), C2 = C([0,34]), C3 = C1 + C2 = C([0,28]), and C∩ = C1 ∩ C2 = C([505,34]) [i] based on
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.