Information on Result #826360
Linear OOA(4115, 132, F4, 2, 41) (dual of [(132, 2), 149, 42]-NRT-code), using OOA 2-folding based on linear OA(4115, 264, F4, 41) (dual of [264, 149, 42]-code), using
- discarding factors / shortening the dual code based on linear OA(4115, 265, F4, 41) (dual of [265, 150, 42]-code), using
- construction XX applied to C1 = C([51,89]), C2 = C([49,87]), C3 = C1 + C2 = C([51,87]), and C∩ = C1 ∩ C2 = C([49,89]) [i] based on
- linear OA(4109, 255, F4, 39) (dual of [255, 146, 40]-code), using the primitive BCH-code C(I) with length 255 = 44−1, defining interval I = {51,52,…,89}, and designed minimum distance d ≥ |I|+1 = 40 [i]
- linear OA(4109, 255, F4, 39) (dual of [255, 146, 40]-code), using the primitive BCH-code C(I) with length 255 = 44−1, defining interval I = {49,50,…,87}, and designed minimum distance d ≥ |I|+1 = 40 [i]
- linear OA(4113, 255, F4, 41) (dual of [255, 142, 42]-code), using the primitive BCH-code C(I) with length 255 = 44−1, defining interval I = {49,50,…,89}, and designed minimum distance d ≥ |I|+1 = 42 [i]
- linear OA(4105, 255, F4, 37) (dual of [255, 150, 38]-code), using the primitive BCH-code C(I) with length 255 = 44−1, defining interval I = {51,52,…,87}, and designed minimum distance d ≥ |I|+1 = 38 [i]
- linear OA(41, 5, F4, 1) (dual of [5, 4, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(41, s, F4, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
- linear OA(41, 5, F4, 1) (dual of [5, 4, 2]-code) (see above)
- construction XX applied to C1 = C([51,89]), C2 = C([49,87]), C3 = C1 + C2 = C([51,87]), and C∩ = C1 ∩ C2 = C([49,89]) [i] based on
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.