Information on Result #842007
Linear OOA(792, 176, F7, 2, 35) (dual of [(176, 2), 260, 36]-NRT-code), using OOA 2-folding based on linear OA(792, 352, F7, 35) (dual of [352, 260, 36]-code), using
- construction XX applied to C1 = C([340,31]), C2 = C([0,32]), C3 = C1 + C2 = C([0,31]), and C∩ = C1 ∩ C2 = C([340,32]) [i] based on
- linear OA(788, 342, F7, 34) (dual of [342, 254, 35]-code), using the primitive BCH-code C(I) with length 342 = 73−1, defining interval I = {−2,−1,…,31}, and designed minimum distance d ≥ |I|+1 = 35 [i]
- linear OA(785, 342, F7, 33) (dual of [342, 257, 34]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 342 = 73−1, defining interval I = [0,32], and designed minimum distance d ≥ |I|+1 = 34 [i]
- linear OA(791, 342, F7, 35) (dual of [342, 251, 36]-code), using the primitive BCH-code C(I) with length 342 = 73−1, defining interval I = {−2,−1,…,32}, and designed minimum distance d ≥ |I|+1 = 36 [i]
- linear OA(782, 342, F7, 32) (dual of [342, 260, 33]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 342 = 73−1, defining interval I = [0,31], and designed minimum distance d ≥ |I|+1 = 33 [i]
- linear OA(71, 7, F7, 1) (dual of [7, 6, 2]-code), using
- Reed–Solomon code RS(6,7) [i]
- linear OA(70, 3, F7, 0) (dual of [3, 3, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(70, s, F7, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.