Information on Result #842175
Linear OOA(7101, 179, F7, 2, 38) (dual of [(179, 2), 257, 39]-NRT-code), using OOA 2-folding based on linear OA(7101, 358, F7, 38) (dual of [358, 257, 39]-code), using
- construction XX applied to C1 = C([21,57]), C2 = C([25,58]), C3 = C1 + C2 = C([25,57]), and C∩ = C1 ∩ C2 = C([21,58]) [i] based on
- linear OA(794, 342, F7, 37) (dual of [342, 248, 38]-code), using the primitive BCH-code C(I) with length 342 = 73−1, defining interval I = {21,22,…,57}, and designed minimum distance d ≥ |I|+1 = 38 [i]
- linear OA(788, 342, F7, 34) (dual of [342, 254, 35]-code), using the primitive BCH-code C(I) with length 342 = 73−1, defining interval I = {25,26,…,58}, and designed minimum distance d ≥ |I|+1 = 35 [i]
- linear OA(797, 342, F7, 38) (dual of [342, 245, 39]-code), using the primitive BCH-code C(I) with length 342 = 73−1, defining interval I = {21,22,…,58}, and designed minimum distance d ≥ |I|+1 = 39 [i]
- linear OA(785, 342, F7, 33) (dual of [342, 257, 34]-code), using the primitive BCH-code C(I) with length 342 = 73−1, defining interval I = {25,26,…,57}, and designed minimum distance d ≥ |I|+1 = 34 [i]
- linear OA(74, 13, F7, 3) (dual of [13, 9, 4]-code or 13-cap in PG(3,7)), using
- linear OA(70, 3, F7, 0) (dual of [3, 3, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(70, s, F7, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.