Information on Result #852608
Linear OOA(990, 185, F9, 2, 34) (dual of [(185, 2), 280, 35]-NRT-code), using OOA 2-folding based on linear OA(990, 370, F9, 34) (dual of [370, 280, 35]-code), using
- construction XX applied to C1 = C([14,46]), C2 = C([13,45]), C3 = C1 + C2 = C([14,45]), and C∩ = C1 ∩ C2 = C([13,46]) [i] based on
- linear OA(987, 364, F9, 33) (dual of [364, 277, 34]-code), using the BCH-code C(I) with length 364 | 93−1, defining interval I = {14,15,…,46}, and designed minimum distance d ≥ |I|+1 = 34 [i]
- linear OA(987, 364, F9, 33) (dual of [364, 277, 34]-code), using the BCH-code C(I) with length 364 | 93−1, defining interval I = {13,14,…,45}, and designed minimum distance d ≥ |I|+1 = 34 [i]
- linear OA(990, 364, F9, 34) (dual of [364, 274, 35]-code), using the BCH-code C(I) with length 364 | 93−1, defining interval I = {13,14,…,46}, and designed minimum distance d ≥ |I|+1 = 35 [i]
- linear OA(984, 364, F9, 32) (dual of [364, 280, 33]-code), using the BCH-code C(I) with length 364 | 93−1, defining interval I = {14,15,…,45}, and designed minimum distance d ≥ |I|+1 = 33 [i]
- linear OA(90, 3, F9, 0) (dual of [3, 3, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(90, s, F9, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(90, 3, F9, 0) (dual of [3, 3, 1]-code) (see above)
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.