Information on Result #859939
Linear OOA(16127, 137, F16, 2, 72) (dual of [(137, 2), 147, 73]-NRT-code), using OOA 2-folding based on linear OA(16127, 274, F16, 72) (dual of [274, 147, 73]-code), using
- construction XX applied to C1 = C([253,68]), C2 = C([7,69]), C3 = C1 + C2 = C([7,68]), and C∩ = C1 ∩ C2 = C([253,69]) [i] based on
- linear OA(16117, 255, F16, 71) (dual of [255, 138, 72]-code), using the primitive BCH-code C(I) with length 255 = 162−1, defining interval I = {−2,−1,…,68}, and designed minimum distance d ≥ |I|+1 = 72 [i]
- linear OA(16110, 255, F16, 63) (dual of [255, 145, 64]-code), using the primitive BCH-code C(I) with length 255 = 162−1, defining interval I = {7,8,…,69}, and designed minimum distance d ≥ |I|+1 = 64 [i]
- linear OA(16119, 255, F16, 72) (dual of [255, 136, 73]-code), using the primitive BCH-code C(I) with length 255 = 162−1, defining interval I = {−2,−1,…,69}, and designed minimum distance d ≥ |I|+1 = 73 [i]
- linear OA(16108, 255, F16, 62) (dual of [255, 147, 63]-code), using the primitive BCH-code C(I) with length 255 = 162−1, defining interval I = {7,8,…,68}, and designed minimum distance d ≥ |I|+1 = 63 [i]
- linear OA(168, 17, F16, 8) (dual of [17, 9, 9]-code or 17-arc in PG(7,16)), using
- extended Reed–Solomon code RSe(9,16) [i]
- linear OA(160, 2, F16, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(160, s, F16, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.