Information on Result #861173
Linear OOA(2533, 314, F25, 2, 17) (dual of [(314, 2), 595, 18]-NRT-code), using OOA 2-folding based on linear OA(2533, 628, F25, 17) (dual of [628, 595, 18]-code), using
- construction XX applied to C1 = C([623,14]), C2 = C([0,15]), C3 = C1 + C2 = C([0,14]), and C∩ = C1 ∩ C2 = C([623,15]) [i] based on
- linear OA(2531, 624, F25, 16) (dual of [624, 593, 17]-code), using the primitive BCH-code C(I) with length 624 = 252−1, defining interval I = {−1,0,…,14}, and designed minimum distance d ≥ |I|+1 = 17 [i]
- linear OA(2531, 624, F25, 16) (dual of [624, 593, 17]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 624 = 252−1, defining interval I = [0,15], and designed minimum distance d ≥ |I|+1 = 17 [i]
- linear OA(2533, 624, F25, 17) (dual of [624, 591, 18]-code), using the primitive BCH-code C(I) with length 624 = 252−1, defining interval I = {−1,0,…,15}, and designed minimum distance d ≥ |I|+1 = 18 [i]
- linear OA(2529, 624, F25, 15) (dual of [624, 595, 16]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 624 = 252−1, defining interval I = [0,14], and designed minimum distance d ≥ |I|+1 = 16 [i]
- linear OA(250, 2, F25, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(250, s, F25, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(250, 2, F25, 0) (dual of [2, 2, 1]-code) (see above)
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(2541, 340, F25, 2, 17) (dual of [(340, 2), 639, 18]-NRT-code) | [i] | (u, u+v)-Construction for OOAs | |
2 | Linear OOA(2542, 341, F25, 2, 17) (dual of [(341, 2), 640, 18]-NRT-code) | [i] | ||
3 | Linear OOA(2543, 342, F25, 2, 17) (dual of [(342, 2), 641, 18]-NRT-code) | [i] | ||
4 | Linear OOA(2544, 366, F25, 2, 17) (dual of [(366, 2), 688, 18]-NRT-code) | [i] | ||
5 | Linear OOA(2545, 380, F25, 2, 17) (dual of [(380, 2), 715, 18]-NRT-code) | [i] | ||
6 | Linear OOA(2592, 400, F25, 2, 34) (dual of [(400, 2), 708, 35]-NRT-code) | [i] | ||
7 | Linear OOA(2594, 402, F25, 2, 34) (dual of [(402, 2), 710, 35]-NRT-code) | [i] | ||
8 | Linear OOA(2593, 400, F25, 2, 35) (dual of [(400, 2), 707, 36]-NRT-code) | [i] | ||
9 | Linear OOA(2595, 402, F25, 2, 35) (dual of [(402, 2), 709, 36]-NRT-code) | [i] | ||
10 | Linear OOA(2547, 392, F25, 2, 17) (dual of [(392, 2), 737, 18]-NRT-code) | [i] | ||
11 | Digital (16, 33, 307)-net over F25 | [i] | Embedding of OOA with Gilbert–Varšamov Bound |