Information on Result #866023
Linear OOA(2795, 9936, F27, 2, 25) (dual of [(9936, 2), 19777, 26]-NRT-code), using OOA 2-folding based on linear OA(2795, 19872, F27, 25) (dual of [19872, 19777, 26]-code), using
- (u, u+v)-construction [i] based on
- linear OA(2722, 186, F27, 12) (dual of [186, 164, 13]-code), using
- construction XX applied to C1 = C([181,9]), C2 = C([0,10]), C3 = C1 + C2 = C([0,9]), and C∩ = C1 ∩ C2 = C([181,10]) [i] based on
- linear OA(2720, 182, F27, 11) (dual of [182, 162, 12]-code), using the BCH-code C(I) with length 182 | 272−1, defining interval I = {−1,0,…,9}, and designed minimum distance d ≥ |I|+1 = 12 [i]
- linear OA(2720, 182, F27, 11) (dual of [182, 162, 12]-code), using the expurgated narrow-sense BCH-code C(I) with length 182 | 272−1, defining interval I = [0,10], and designed minimum distance d ≥ |I|+1 = 12 [i]
- linear OA(2722, 182, F27, 12) (dual of [182, 160, 13]-code), using the BCH-code C(I) with length 182 | 272−1, defining interval I = {−1,0,…,10}, and designed minimum distance d ≥ |I|+1 = 13 [i]
- linear OA(2718, 182, F27, 10) (dual of [182, 164, 11]-code), using the expurgated narrow-sense BCH-code C(I) with length 182 | 272−1, defining interval I = [0,9], and designed minimum distance d ≥ |I|+1 = 11 [i]
- linear OA(270, 2, F27, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(270, s, F27, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(270, 2, F27, 0) (dual of [2, 2, 1]-code) (see above)
- construction XX applied to C1 = C([181,9]), C2 = C([0,10]), C3 = C1 + C2 = C([0,9]), and C∩ = C1 ∩ C2 = C([181,10]) [i] based on
- linear OA(2773, 19686, F27, 25) (dual of [19686, 19613, 26]-code), using
- construction X applied to Ce(24) ⊂ Ce(23) [i] based on
- linear OA(2773, 19683, F27, 25) (dual of [19683, 19610, 26]-code), using an extension Ce(24) of the primitive narrow-sense BCH-code C(I) with length 19682 = 273−1, defining interval I = [1,24], and designed minimum distance d ≥ |I|+1 = 25 [i]
- linear OA(2770, 19683, F27, 24) (dual of [19683, 19613, 25]-code), using an extension Ce(23) of the primitive narrow-sense BCH-code C(I) with length 19682 = 273−1, defining interval I = [1,23], and designed minimum distance d ≥ |I|+1 = 24 [i]
- linear OA(270, 3, F27, 0) (dual of [3, 3, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(270, s, F27, 0) (dual of [s, s, 1]-code) for arbitrarily large s (see above)
- construction X applied to Ce(24) ⊂ Ce(23) [i] based on
- linear OA(2722, 186, F27, 12) (dual of [186, 164, 13]-code), using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.