Information on Result #895333

Linear OOA(3249, 4194672, F3, 2, 21) (dual of [(4194672, 2), 8389095, 22]-NRT-code), using (u, u+v)-construction based on
  1. linear OOA(339, 371, F3, 2, 10) (dual of [(371, 2), 703, 11]-NRT-code), using
    • OOA 2-folding [i] based on linear OA(339, 742, F3, 10) (dual of [742, 703, 11]-code), using
      • construction XX applied to C1 = C([360,367]), C2 = C([358,365]), C3 = C1 + C2 = C([360,365]), and C∩ = C1 ∩ C2 = C([358,367]) [i] based on
        1. linear OA(331, 728, F3, 8) (dual of [728, 697, 9]-code), using the primitive BCH-code C(I) with length 728 = 36−1, defining interval I = {360,361,…,367}, and designed minimum distance d ≥ |I|+1 = 9 [i]
        2. linear OA(331, 728, F3, 8) (dual of [728, 697, 9]-code), using the primitive BCH-code C(I) with length 728 = 36−1, defining interval I = {358,359,…,365}, and designed minimum distance d ≥ |I|+1 = 9 [i]
        3. linear OA(337, 728, F3, 10) (dual of [728, 691, 11]-code), using the primitive BCH-code C(I) with length 728 = 36−1, defining interval I = {358,359,…,367}, and designed minimum distance d ≥ |I|+1 = 11 [i]
        4. linear OA(325, 728, F3, 6) (dual of [728, 703, 7]-code), using the primitive BCH-code C(I) with length 728 = 36−1, defining interval I = {360,361,…,365}, and designed minimum distance d ≥ |I|+1 = 7 [i]
        5. linear OA(31, 7, F3, 1) (dual of [7, 6, 2]-code), using
        6. linear OA(31, 7, F3, 1) (dual of [7, 6, 2]-code) (see above)
  2. linear OOA(3210, 4194301, F3, 2, 21) (dual of [(4194301, 2), 8388392, 22]-NRT-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, k and s, k and t, m and s, m and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(3250, 4194672, F3, 2, 21) (dual of [(4194672, 2), 8389094, 22]-NRT-code) [i]OOA Duplication
2Linear OOA(3249, 2097336, F3, 4, 21) (dual of [(2097336, 4), 8389095, 22]-NRT-code) [i]OOA Folding