Information on Result #906818
Linear OOA(3221, 1067, F32, 2, 8) (dual of [(1067, 2), 2113, 9]-NRT-code), using generalized (u, u+v)-construction based on
- linear OOA(320, 33, F32, 2, 0) (dual of [(33, 2), 66, 1]-NRT-code), using
- discarding factors / shortening the dual code based on linear OOA(320, s, F32, 2, 0) for arbitrarily large s, using
- linear OOA(320, 33, F32, 2, 0) (dual of [(33, 2), 66, 1]-NRT-code) (see above)
- linear OOA(320, 33, F32, 2, 0) (dual of [(33, 2), 66, 1]-NRT-code) (see above)
- linear OOA(320, 33, F32, 2, 0) (dual of [(33, 2), 66, 1]-NRT-code) (see above)
- linear OOA(320, 33, F32, 2, 0) (dual of [(33, 2), 66, 1]-NRT-code) (see above)
- linear OOA(320, 33, F32, 2, 0) (dual of [(33, 2), 66, 1]-NRT-code) (see above)
- linear OOA(320, 33, F32, 2, 0) (dual of [(33, 2), 66, 1]-NRT-code) (see above)
- linear OOA(320, 33, F32, 2, 0) (dual of [(33, 2), 66, 1]-NRT-code) (see above)
- linear OOA(320, 33, F32, 2, 0) (dual of [(33, 2), 66, 1]-NRT-code) (see above)
- linear OOA(320, 33, F32, 2, 0) (dual of [(33, 2), 66, 1]-NRT-code) (see above)
- linear OOA(320, 33, F32, 2, 0) (dual of [(33, 2), 66, 1]-NRT-code) (see above)
- linear OOA(320, 33, F32, 2, 0) (dual of [(33, 2), 66, 1]-NRT-code) (see above)
- linear OOA(320, 33, F32, 2, 0) (dual of [(33, 2), 66, 1]-NRT-code) (see above)
- linear OOA(320, 33, F32, 2, 0) (dual of [(33, 2), 66, 1]-NRT-code) (see above)
- linear OOA(320, 33, F32, 2, 0) (dual of [(33, 2), 66, 1]-NRT-code) (see above)
- linear OOA(320, 33, F32, 2, 0) (dual of [(33, 2), 66, 1]-NRT-code) (see above)
- linear OOA(320, 33, F32, 2, 0) (dual of [(33, 2), 66, 1]-NRT-code) (see above)
- linear OOA(320, 33, F32, 2, 0) (dual of [(33, 2), 66, 1]-NRT-code) (see above)
- linear OOA(320, 33, F32, 2, 0) (dual of [(33, 2), 66, 1]-NRT-code) (see above)
- linear OOA(320, 33, F32, 2, 0) (dual of [(33, 2), 66, 1]-NRT-code) (see above)
- linear OOA(320, 33, F32, 2, 0) (dual of [(33, 2), 66, 1]-NRT-code) (see above)
- linear OOA(320, 33, F32, 2, 0) (dual of [(33, 2), 66, 1]-NRT-code) (see above)
- linear OOA(320, 33, F32, 2, 0) (dual of [(33, 2), 66, 1]-NRT-code) (see above)
- linear OOA(320, 33, F32, 2, 0) (dual of [(33, 2), 66, 1]-NRT-code) (see above)
- linear OOA(321, 33, F32, 2, 1) (dual of [(33, 2), 65, 2]-NRT-code), using
- discarding factors / shortening the dual code based on linear OOA(321, s, F32, 2, 1) for arbitrarily large s, using
- appending 1 arbitrary column [i] based on linear OA(321, s, F32, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
- discarding factors / shortening the dual code based on linear OOA(321, s, F32, 2, 1) for arbitrarily large s, using
- linear OOA(321, 33, F32, 2, 1) (dual of [(33, 2), 65, 2]-NRT-code) (see above)
- linear OOA(321, 33, F32, 2, 1) (dual of [(33, 2), 65, 2]-NRT-code) (see above)
- linear OOA(321, 33, F32, 2, 1) (dual of [(33, 2), 65, 2]-NRT-code) (see above)
- linear OOA(322, 33, F32, 2, 2) (dual of [(33, 2), 64, 3]-NRT-code), using
- extended Reed–Solomon NRT-code RSe(2;64,32) [i]
- linear OOA(322, 33, F32, 2, 2) (dual of [(33, 2), 64, 3]-NRT-code) (see above)
- linear OOA(324, 33, F32, 2, 4) (dual of [(33, 2), 62, 5]-NRT-code), using
- extended Reed–Solomon NRT-code RSe(2;62,32) [i]
- linear OOA(329, 44, F32, 2, 8) (dual of [(44, 2), 79, 9]-NRT-code), using
- extended algebraic-geometric NRT-code AGe(2;F,79P) [i] based on function field F/F32 with g(F) = 1 and N(F) ≥ 44, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(32102, 4195368, F32, 2, 17) (dual of [(4195368, 2), 8390634, 18]-NRT-code) | [i] | (u, u+v)-Construction for OOAs | |
2 | Linear OOA(3297, 4195368, F32, 2, 16) (dual of [(4195368, 2), 8390639, 17]-NRT-code) | [i] | ||
3 | Linear OOA(3221, 533, F32, 10, 8) (dual of [(533, 10), 5309, 9]-NRT-code) | [i] | OOA Folding and Stacking with Additional Row |