Information on Result #948489
Linear OOA(2209, 191, F2, 3, 44) (dual of [(191, 3), 364, 45]-NRT-code), using OOA 3-folding based on linear OA(2209, 573, F2, 44) (dual of [573, 364, 45]-code), using
- 2 times code embedding in larger space [i] based on linear OA(2207, 571, F2, 44) (dual of [571, 364, 45]-code), using
- construction XX applied to C1 = C([505,34]), C2 = C([0,38]), C3 = C1 + C2 = C([0,34]), and C∩ = C1 ∩ C2 = C([505,38]) [i] based on
- linear OA(2172, 511, F2, 41) (dual of [511, 339, 42]-code), using the primitive BCH-code C(I) with length 511 = 29−1, defining interval I = {−6,−5,…,34}, and designed minimum distance d ≥ |I|+1 = 42 [i]
- linear OA(2163, 511, F2, 39) (dual of [511, 348, 40]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 511 = 29−1, defining interval I = [0,38], and designed minimum distance d ≥ |I|+1 = 40 [i]
- linear OA(2190, 511, F2, 45) (dual of [511, 321, 46]-code), using the primitive BCH-code C(I) with length 511 = 29−1, defining interval I = {−6,−5,…,38}, and designed minimum distance d ≥ |I|+1 = 46 [i]
- linear OA(2145, 511, F2, 35) (dual of [511, 366, 36]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 511 = 29−1, defining interval I = [0,34], and designed minimum distance d ≥ |I|+1 = 36 [i]
- linear OA(211, 36, F2, 4) (dual of [36, 25, 5]-code), using
- discarding factors / shortening the dual code based on linear OA(211, 44, F2, 4) (dual of [44, 33, 5]-code), using
- linear OA(26, 24, F2, 3) (dual of [24, 18, 4]-code or 24-cap in PG(5,2)), using
- discarding factors / shortening the dual code based on linear OA(26, 32, F2, 3) (dual of [32, 26, 4]-code or 32-cap in PG(5,2)), using
- construction XX applied to C1 = C([505,34]), C2 = C([0,38]), C3 = C1 + C2 = C([0,34]), and C∩ = C1 ∩ C2 = C([505,38]) [i] based on
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.