Information on Result #948926
Linear OOA(2214, 179, F2, 3, 49) (dual of [(179, 3), 323, 50]-NRT-code), using OOA 3-folding based on linear OA(2214, 537, F2, 49) (dual of [537, 323, 50]-code), using
- construction XX applied to C1 = C([507,42]), C2 = C([0,44]), C3 = C1 + C2 = C([0,42]), and C∩ = C1 ∩ C2 = C([507,44]) [i] based on
- linear OA(2199, 511, F2, 47) (dual of [511, 312, 48]-code), using the primitive BCH-code C(I) with length 511 = 29−1, defining interval I = {−4,−3,…,42}, and designed minimum distance d ≥ |I|+1 = 48 [i]
- linear OA(2190, 511, F2, 45) (dual of [511, 321, 46]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 511 = 29−1, defining interval I = [0,44], and designed minimum distance d ≥ |I|+1 = 46 [i]
- linear OA(2208, 511, F2, 49) (dual of [511, 303, 50]-code), using the primitive BCH-code C(I) with length 511 = 29−1, defining interval I = {−4,−3,…,44}, and designed minimum distance d ≥ |I|+1 = 50 [i]
- linear OA(2181, 511, F2, 43) (dual of [511, 330, 44]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 511 = 29−1, defining interval I = [0,42], and designed minimum distance d ≥ |I|+1 = 44 [i]
- linear OA(25, 16, F2, 3) (dual of [16, 11, 4]-code or 16-cap in PG(4,2)), using
- linear OA(21, 10, F2, 1) (dual of [10, 9, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(21, s, F2, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.