Information on Result #1069051
Linear OOA(8168, 132943, F81, 4, 19) (dual of [(132943, 4), 531704, 20]-NRT-code), using OOA 2-folding based on linear OOA(8168, 265886, F81, 2, 19) (dual of [(265886, 2), 531704, 20]-NRT-code), using
- (u, u+v)-construction [i] based on
- linear OOA(8113, 164, F81, 2, 9) (dual of [(164, 2), 315, 10]-NRT-code), using
- (u, u+v)-construction [i] based on
- linear OOA(814, 82, F81, 2, 4) (dual of [(82, 2), 160, 5]-NRT-code), using
- extended Reed–Solomon NRT-code RSe(2;160,81) [i]
- linear OOA(819, 82, F81, 2, 9) (dual of [(82, 2), 155, 10]-NRT-code), using
- extended Reed–Solomon NRT-code RSe(2;155,81) [i]
- linear OOA(814, 82, F81, 2, 4) (dual of [(82, 2), 160, 5]-NRT-code), using
- (u, u+v)-construction [i] based on
- linear OOA(8155, 265722, F81, 2, 19) (dual of [(265722, 2), 531389, 20]-NRT-code), using
- OOA 2-folding [i] based on linear OA(8155, 531444, F81, 19) (dual of [531444, 531389, 20]-code), using
- construction X applied to Ce(18) ⊂ Ce(17) [i] based on
- linear OA(8155, 531441, F81, 19) (dual of [531441, 531386, 20]-code), using an extension Ce(18) of the primitive narrow-sense BCH-code C(I) with length 531440 = 813−1, defining interval I = [1,18], and designed minimum distance d ≥ |I|+1 = 19 [i]
- linear OA(8152, 531441, F81, 18) (dual of [531441, 531389, 19]-code), using an extension Ce(17) of the primitive narrow-sense BCH-code C(I) with length 531440 = 813−1, defining interval I = [1,17], and designed minimum distance d ≥ |I|+1 = 18 [i]
- linear OA(810, 3, F81, 0) (dual of [3, 3, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(810, s, F81, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- construction X applied to Ce(18) ⊂ Ce(17) [i] based on
- OOA 2-folding [i] based on linear OA(8155, 531444, F81, 19) (dual of [531444, 531389, 20]-code), using
- linear OOA(8113, 164, F81, 2, 9) (dual of [(164, 2), 315, 10]-NRT-code), using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.