Information on Result #1093271
Linear OOA(363, 36, F3, 4, 37) (dual of [(36, 4), 81, 38]-NRT-code), using algebraic-geometric NRT-code AG(4;F,53P) with degPÂ =Â 2 based on function field F/F3 with g(F) = 26 and N(F) ≥ 36, using an explicitly constructive algebraic function field [i]
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(3165, 73, F3, 4, 75) (dual of [(73, 4), 127, 76]-NRT-code) | [i] | (u, u+v)-Construction for OOAs | |
2 | Linear OOA(378, 39, F3, 4, 45) (dual of [(39, 4), 78, 46]-NRT-code) | [i] | ✔ | Construction X with Algebraic-Geometric NRT-Codes |
3 | Linear OOA(377, 39, F3, 4, 44) (dual of [(39, 4), 79, 45]-NRT-code) | [i] | ✔ | |
4 | Linear OOA(370, 39, F3, 4, 37) (dual of [(39, 4), 86, 38]-NRT-code) | [i] | ✔ | |
5 | Linear OOA(369, 39, F3, 4, 36) (dual of [(39, 4), 87, 37]-NRT-code) | [i] | ✔ | |
6 | Linear OOA(382, 40, F3, 4, 47) (dual of [(40, 4), 78, 48]-NRT-code) | [i] | ✔ | |
7 | Linear OOA(383, 41, F3, 4, 47) (dual of [(41, 4), 81, 48]-NRT-code) | [i] | ✔ | |
8 | Linear OOA(381, 40, F3, 4, 46) (dual of [(40, 4), 79, 47]-NRT-code) | [i] | ✔ | |
9 | Linear OOA(372, 40, F3, 4, 37) (dual of [(40, 4), 88, 38]-NRT-code) | [i] | ✔ | |
10 | Linear OOA(373, 41, F3, 4, 37) (dual of [(41, 4), 91, 38]-NRT-code) | [i] | ✔ | |
11 | Linear OOA(371, 40, F3, 4, 36) (dual of [(40, 4), 89, 37]-NRT-code) | [i] | ✔ | |
12 | Linear OOA(387, 42, F3, 4, 49) (dual of [(42, 4), 81, 50]-NRT-code) | [i] | ✔ | |
13 | Linear OOA(375, 42, F3, 4, 37) (dual of [(42, 4), 93, 38]-NRT-code) | [i] | ✔ | |
14 | Linear OOA(391, 43, F3, 4, 51) (dual of [(43, 4), 81, 52]-NRT-code) | [i] | ✔ | |
15 | Linear OOA(396, 44, F3, 4, 53) (dual of [(44, 4), 80, 54]-NRT-code) | [i] | ✔ | |
16 | Linear OOA(395, 44, F3, 4, 52) (dual of [(44, 4), 81, 53]-NRT-code) | [i] | ✔ |