Information on Result #1220918

Digital (56, 64, 4210000)-net over F25, using (u, u+v)-construction based on
  1. digital (12, 16, 4194301)-net over F25, using
  2. digital (40, 48, 2105000)-net over F25, using
    • (u, u+v)-construction [i] based on
      1. digital (8, 12, 7850)-net over F25, using
        • net defined by OOA [i] based on linear OOA(2512, 7850, F25, 4, 4) (dual of [(7850, 4), 31388, 5]-NRT-code), using
          • OA 2-folding and stacking [i] based on linear OA(2512, 15700, F25, 4) (dual of [15700, 15688, 5]-code), using
            • generalized (u, u+v)-construction [i] based on
              1. linear OA(250, 628, F25, 0) (dual of [628, 628, 1]-code), using
              2. linear OA(250, 628, F25, 0) (dual of [628, 628, 1]-code) (see above)
              3. linear OA(250, 628, F25, 0) (dual of [628, 628, 1]-code) (see above)
              4. linear OA(250, 628, F25, 0) (dual of [628, 628, 1]-code) (see above)
              5. linear OA(250, 628, F25, 0) (dual of [628, 628, 1]-code) (see above)
              6. linear OA(250, 628, F25, 0) (dual of [628, 628, 1]-code) (see above)
              7. linear OA(250, 628, F25, 0) (dual of [628, 628, 1]-code) (see above)
              8. linear OA(250, 628, F25, 0) (dual of [628, 628, 1]-code) (see above)
              9. linear OA(250, 628, F25, 0) (dual of [628, 628, 1]-code) (see above)
              10. linear OA(250, 628, F25, 0) (dual of [628, 628, 1]-code) (see above)
              11. linear OA(250, 628, F25, 0) (dual of [628, 628, 1]-code) (see above)
              12. linear OA(250, 628, F25, 0) (dual of [628, 628, 1]-code) (see above)
              13. linear OA(250, 628, F25, 0) (dual of [628, 628, 1]-code) (see above)
              14. linear OA(250, 628, F25, 0) (dual of [628, 628, 1]-code) (see above)
              15. linear OA(250, 628, F25, 0) (dual of [628, 628, 1]-code) (see above)
              16. linear OA(250, 628, F25, 0) (dual of [628, 628, 1]-code) (see above)
              17. linear OA(250, 628, F25, 0) (dual of [628, 628, 1]-code) (see above)
              18. linear OA(250, 628, F25, 0) (dual of [628, 628, 1]-code) (see above)
              19. linear OA(250, 628, F25, 0) (dual of [628, 628, 1]-code) (see above)
              20. linear OA(250, 628, F25, 0) (dual of [628, 628, 1]-code) (see above)
              21. linear OA(250, 628, F25, 0) (dual of [628, 628, 1]-code) (see above)
              22. linear OA(251, 628, F25, 1) (dual of [628, 627, 2]-code), using
              23. linear OA(251, 628, F25, 1) (dual of [628, 627, 2]-code) (see above)
              24. linear OA(253, 628, F25, 2) (dual of [628, 625, 3]-code), using
              25. linear OA(257, 628, F25, 4) (dual of [628, 621, 5]-code), using
                • construction XX applied to C1 = C([623,1]), C2 = C([0,2]), C3 = C1 + C2 = C([0,1]), and C∩ = C1 ∩ C2 = C([623,2]) [i] based on
                  1. linear OA(255, 624, F25, 3) (dual of [624, 619, 4]-code or 624-cap in PG(4,25)), using the primitive BCH-code C(I) with length 624 = 252−1, defining interval I = {−1,0,1}, and designed minimum distance d ≥ |I|+1 = 4 [i]
                  2. linear OA(255, 624, F25, 3) (dual of [624, 619, 4]-code or 624-cap in PG(4,25)), using the primitive expurgated narrow-sense BCH-code C(I) with length 624 = 252−1, defining interval I = [0,2], and designed minimum distance d ≥ |I|+1 = 4 [i]
                  3. linear OA(257, 624, F25, 4) (dual of [624, 617, 5]-code), using the primitive BCH-code C(I) with length 624 = 252−1, defining interval I = {−1,0,1,2}, and designed minimum distance d ≥ |I|+1 = 5 [i]
                  4. linear OA(253, 624, F25, 2) (dual of [624, 621, 3]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 624 = 252−1, defining interval I = [0,1], and designed minimum distance d ≥ |I|+1 = 3 [i]
                  5. linear OA(250, 2, F25, 0) (dual of [2, 2, 1]-code), using
                  6. linear OA(250, 2, F25, 0) (dual of [2, 2, 1]-code) (see above)
      2. digital (28, 36, 2097150)-net over F25, using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, k and s, k and t, m and s, m and t, t and s.

Other Results with Identical Parameters

None.

Depending Results

None.