Information on Result #1232883

Digital (86, 99, 2806082)-net over F27, using generalized (u, u+v)-construction based on
  1. digital (8, 12, 9882)-net over F27, using
    • net defined by OOA [i] based on linear OOA(2712, 9882, F27, 4, 4) (dual of [(9882, 4), 39516, 5]-NRT-code), using
      • OA 2-folding and stacking [i] based on linear OA(2712, 19764, F27, 4) (dual of [19764, 19752, 5]-code), using
        • generalized (u, u+v)-construction [i] based on
          1. linear OA(270, 732, F27, 0) (dual of [732, 732, 1]-code), using
          2. linear OA(270, 732, F27, 0) (dual of [732, 732, 1]-code) (see above)
          3. linear OA(270, 732, F27, 0) (dual of [732, 732, 1]-code) (see above)
          4. linear OA(270, 732, F27, 0) (dual of [732, 732, 1]-code) (see above)
          5. linear OA(270, 732, F27, 0) (dual of [732, 732, 1]-code) (see above)
          6. linear OA(270, 732, F27, 0) (dual of [732, 732, 1]-code) (see above)
          7. linear OA(270, 732, F27, 0) (dual of [732, 732, 1]-code) (see above)
          8. linear OA(270, 732, F27, 0) (dual of [732, 732, 1]-code) (see above)
          9. linear OA(270, 732, F27, 0) (dual of [732, 732, 1]-code) (see above)
          10. linear OA(270, 732, F27, 0) (dual of [732, 732, 1]-code) (see above)
          11. linear OA(270, 732, F27, 0) (dual of [732, 732, 1]-code) (see above)
          12. linear OA(270, 732, F27, 0) (dual of [732, 732, 1]-code) (see above)
          13. linear OA(270, 732, F27, 0) (dual of [732, 732, 1]-code) (see above)
          14. linear OA(270, 732, F27, 0) (dual of [732, 732, 1]-code) (see above)
          15. linear OA(270, 732, F27, 0) (dual of [732, 732, 1]-code) (see above)
          16. linear OA(270, 732, F27, 0) (dual of [732, 732, 1]-code) (see above)
          17. linear OA(270, 732, F27, 0) (dual of [732, 732, 1]-code) (see above)
          18. linear OA(270, 732, F27, 0) (dual of [732, 732, 1]-code) (see above)
          19. linear OA(270, 732, F27, 0) (dual of [732, 732, 1]-code) (see above)
          20. linear OA(270, 732, F27, 0) (dual of [732, 732, 1]-code) (see above)
          21. linear OA(270, 732, F27, 0) (dual of [732, 732, 1]-code) (see above)
          22. linear OA(270, 732, F27, 0) (dual of [732, 732, 1]-code) (see above)
          23. linear OA(270, 732, F27, 0) (dual of [732, 732, 1]-code) (see above)
          24. linear OA(271, 732, F27, 1) (dual of [732, 731, 2]-code), using
          25. linear OA(271, 732, F27, 1) (dual of [732, 731, 2]-code) (see above)
          26. linear OA(273, 732, F27, 2) (dual of [732, 729, 3]-code), using
          27. linear OA(277, 732, F27, 4) (dual of [732, 725, 5]-code), using
            • construction XX applied to C1 = C([727,1]), C2 = C([0,2]), C3 = C1 + C2 = C([0,1]), and C∩ = C1 ∩ C2 = C([727,2]) [i] based on
              1. linear OA(275, 728, F27, 3) (dual of [728, 723, 4]-code or 728-cap in PG(4,27)), using the primitive BCH-code C(I) with length 728 = 272−1, defining interval I = {−1,0,1}, and designed minimum distance d ≥ |I|+1 = 4 [i]
              2. linear OA(275, 728, F27, 3) (dual of [728, 723, 4]-code or 728-cap in PG(4,27)), using the primitive expurgated narrow-sense BCH-code C(I) with length 728 = 272−1, defining interval I = [0,2], and designed minimum distance d ≥ |I|+1 = 4 [i]
              3. linear OA(277, 728, F27, 4) (dual of [728, 721, 5]-code), using the primitive BCH-code C(I) with length 728 = 272−1, defining interval I = {−1,0,1,2}, and designed minimum distance d ≥ |I|+1 = 5 [i]
              4. linear OA(273, 728, F27, 2) (dual of [728, 725, 3]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 728 = 272−1, defining interval I = [0,1], and designed minimum distance d ≥ |I|+1 = 3 [i]
              5. linear OA(270, 2, F27, 0) (dual of [2, 2, 1]-code), using
              6. linear OA(270, 2, F27, 0) (dual of [2, 2, 1]-code) (see above)
  2. digital (20, 26, 1398100)-net over F27, using
  3. digital (48, 61, 1398100)-net over F27, using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, k and s, k and t, m and s, m and t, t and s.

Other Results with Identical Parameters

None.

Depending Results

None.