Information on Result #1303373
Linear OA(9104, 59083, F9, 22) (dual of [59083, 58979, 23]-code), using construction X with Varšamov bound based on
- linear OA(9103, 59081, F9, 22) (dual of [59081, 58978, 23]-code), using
- construction X applied to Ce(21) ⊂ Ce(15) [i] based on
- linear OA(996, 59049, F9, 22) (dual of [59049, 58953, 23]-code), using an extension Ce(21) of the primitive narrow-sense BCH-code C(I) with length 59048 = 95−1, defining interval I = [1,21], and designed minimum distance d ≥ |I|+1 = 22 [i]
- linear OA(971, 59049, F9, 16) (dual of [59049, 58978, 17]-code), using an extension Ce(15) of the primitive narrow-sense BCH-code C(I) with length 59048 = 95−1, defining interval I = [1,15], and designed minimum distance d ≥ |I|+1 = 16 [i]
- linear OA(97, 32, F9, 5) (dual of [32, 25, 6]-code), using
- discarding factors / shortening the dual code based on linear OA(97, 73, F9, 5) (dual of [73, 66, 6]-code), using
- construction X applied to Ce(21) ⊂ Ce(15) [i] based on
- linear OA(9103, 59082, F9, 21) (dual of [59082, 58979, 22]-code), using Gilbert–Varšamov bound and bm = 9103 > Vbs−1(k−1) = 126839 185720 248242 789013 704705 537096 154453 545801 389990 821905 629506 279163 910901 698635 959704 346441 [i]
- linear OA(90, 1, F9, 0) (dual of [1, 1, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(90, s, F9, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(9104, 59083, F9, 2, 22) (dual of [(59083, 2), 118062, 23]-NRT-code) | [i] | Embedding of OOA with Gilbert–Varšamov Bound | |
2 | Linear OOA(9104, 59083, F9, 3, 22) (dual of [(59083, 3), 177145, 23]-NRT-code) | [i] | ||
3 | Digital (82, 104, 59083)-net over F9 | [i] |