Information on Result #1303559
Linear OA(9139, 59083, F9, 30) (dual of [59083, 58944, 31]-code), using construction X with Varšamov bound based on
- linear OA(9138, 59081, F9, 30) (dual of [59081, 58943, 31]-code), using
- construction X applied to Ce(29) ⊂ Ce(23) [i] based on
- linear OA(9131, 59049, F9, 30) (dual of [59049, 58918, 31]-code), using an extension Ce(29) of the primitive narrow-sense BCH-code C(I) with length 59048 = 95−1, defining interval I = [1,29], and designed minimum distance d ≥ |I|+1 = 30 [i]
- linear OA(9106, 59049, F9, 24) (dual of [59049, 58943, 25]-code), using an extension Ce(23) of the primitive narrow-sense BCH-code C(I) with length 59048 = 95−1, defining interval I = [1,23], and designed minimum distance d ≥ |I|+1 = 24 [i]
- linear OA(97, 32, F9, 5) (dual of [32, 25, 6]-code), using
- discarding factors / shortening the dual code based on linear OA(97, 73, F9, 5) (dual of [73, 66, 6]-code), using
- construction X applied to Ce(29) ⊂ Ce(23) [i] based on
- linear OA(9138, 59082, F9, 29) (dual of [59082, 58944, 30]-code), using Gilbert–Varšamov bound and bm = 9138 > Vbs−1(k−1) = 2512 840709 267434 217424 265246 665719 864885 254308 785744 656690 374258 774253 122135 696802 772131 385729 952133 547016 831318 279028 872183 930697 [i]
- linear OA(90, 1, F9, 0) (dual of [1, 1, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(90, s, F9, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(9139, 59083, F9, 2, 30) (dual of [(59083, 2), 118027, 31]-NRT-code) | [i] | Embedding of OOA with Gilbert–Varšamov Bound | |
2 | Linear OOA(9139, 59083, F9, 3, 30) (dual of [(59083, 3), 177110, 31]-NRT-code) | [i] | ||
3 | Digital (109, 139, 59083)-net over F9 | [i] |