Information on Result #1317441

Linear OA(2192, 210, F2, 87) (dual of [210, 18, 88]-code), using concatenation of two codes based on
  1. linear OA(461, 70, F4, 43) (dual of [70, 9, 44]-code), using
  2. linear OA(21, 3, F2, 1) (dual of [3, 2, 2]-code), using

Mode: Linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(2192, 210, F2, 86) (dual of [210, 18, 87]-code) [i]Strength Reduction
2Linear OA(2192, 210, F2, 85) (dual of [210, 18, 86]-code) [i]
3Linear OA(2192, 210, F2, 84) (dual of [210, 18, 85]-code) [i]
4Linear OA(2193, 211, F2, 87) (dual of [211, 18, 88]-code) [i]Code Embedding in Larger Space
5Linear OA(2194, 212, F2, 87) (dual of [212, 18, 88]-code) [i]
6Linear OA(2195, 213, F2, 87) (dual of [213, 18, 88]-code) [i]
7Linear OA(2196, 214, F2, 87) (dual of [214, 18, 88]-code) [i]
8Linear OA(2197, 215, F2, 87) (dual of [215, 18, 88]-code) [i]
9Linear OA(2191, 209, F2, 86) (dual of [209, 18, 87]-code) [i]Truncation
10Linear OA(2190, 208, F2, 85) (dual of [208, 18, 86]-code) [i]
11Linear OA(2188, 206, F2, 83) (dual of [206, 18, 84]-code) [i]
12Linear OA(2187, 205, F2, 82) (dual of [205, 18, 83]-code) [i]