Information on Result #1324242
Linear OA(4251, 65627, F4, 38) (dual of [65627, 65376, 39]-code), using construction X with Varšamov bound based on
- linear OA(4248, 65621, F4, 38) (dual of [65621, 65373, 39]-code), using
- construction X applied to Ce(37) ⊂ Ce(26) [i] based on
- linear OA(4225, 65536, F4, 38) (dual of [65536, 65311, 39]-code), using an extension Ce(37) of the primitive narrow-sense BCH-code C(I) with length 65535 = 48−1, defining interval I = [1,37], and designed minimum distance d ≥ |I|+1 = 38 [i]
- linear OA(4161, 65536, F4, 27) (dual of [65536, 65375, 28]-code), using an extension Ce(26) of the primitive narrow-sense BCH-code C(I) with length 65535 = 48−1, defining interval I = [1,26], and designed minimum distance d ≥ |I|+1 = 27 [i]
- linear OA(423, 85, F4, 10) (dual of [85, 62, 11]-code), using
- a “GraCyc†code from Grassl’s database [i]
- construction X applied to Ce(37) ⊂ Ce(26) [i] based on
- linear OA(4248, 65624, F4, 37) (dual of [65624, 65376, 38]-code), using Gilbert–Varšamov bound and bm = 4248 > Vbs−1(k−1) = 103695 110977 410676 791185 579183 780442 075990 027315 653842 785331 519337 480348 865753 079052 767129 297242 209135 373802 931522 640730 047556 181688 865071 976333 039318 [i]
- linear OA(40, 3, F4, 0) (dual of [3, 3, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(40, s, F4, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.