Information on Result #1324268
Linear OA(4257, 16431, F4, 47) (dual of [16431, 16174, 48]-code), using construction X with Varšamov bound based on
- linear OA(4255, 16428, F4, 47) (dual of [16428, 16173, 48]-code), using
- construction X applied to Ce(46) ⊂ Ce(40) [i] based on
- linear OA(4246, 16384, F4, 47) (dual of [16384, 16138, 48]-code), using an extension Ce(46) of the primitive narrow-sense BCH-code C(I) with length 16383 = 47−1, defining interval I = [1,46], and designed minimum distance d ≥ |I|+1 = 47 [i]
- linear OA(4211, 16384, F4, 41) (dual of [16384, 16173, 42]-code), using an extension Ce(40) of the primitive narrow-sense BCH-code C(I) with length 16383 = 47−1, defining interval I = [1,40], and designed minimum distance d ≥ |I|+1 = 41 [i]
- linear OA(49, 44, F4, 5) (dual of [44, 35, 6]-code), using
- discarding factors / shortening the dual code based on linear OA(49, 51, F4, 5) (dual of [51, 42, 6]-code), using
- a “DaH†code from Brouwer’s database [i]
- discarding factors / shortening the dual code based on linear OA(49, 51, F4, 5) (dual of [51, 42, 6]-code), using
- construction X applied to Ce(46) ⊂ Ce(40) [i] based on
- linear OA(4255, 16429, F4, 45) (dual of [16429, 16174, 46]-code), using Gilbert–Varšamov bound and bm = 4255 > Vbs−1(k−1) = 107 107661 522654 406326 154419 709174 962982 081337 226419 983091 865568 733458 597352 547304 781433 959396 568416 944448 779029 482416 033746 672058 127392 242057 933968 519168 [i]
- linear OA(41, 2, F4, 1) (dual of [2, 1, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(41, s, F4, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.