Information on Result #1324304
Linear OA(5129, 1953182, F5, 17) (dual of [1953182, 1953053, 18]-code), using construction X with Varšamov bound based on
- linear OA(5127, 1953179, F5, 17) (dual of [1953179, 1953052, 18]-code), using
- construction X applied to Ce(16) ⊂ Ce(10) [i] based on
- linear OA(5118, 1953125, F5, 17) (dual of [1953125, 1953007, 18]-code), using an extension Ce(16) of the primitive narrow-sense BCH-code C(I) with length 1953124 = 59−1, defining interval I = [1,16], and designed minimum distance d ≥ |I|+1 = 17 [i]
- linear OA(573, 1953125, F5, 11) (dual of [1953125, 1953052, 12]-code), using an extension Ce(10) of the primitive narrow-sense BCH-code C(I) with length 1953124 = 59−1, defining interval I = [1,10], and designed minimum distance d ≥ |I|+1 = 11 [i]
- linear OA(59, 54, F5, 5) (dual of [54, 45, 6]-code), using
- discarding factors / shortening the dual code based on linear OA(59, 62, F5, 5) (dual of [62, 53, 6]-code), using
- a “GraCyc†code from Grassl’s database [i]
- discarding factors / shortening the dual code based on linear OA(59, 62, F5, 5) (dual of [62, 53, 6]-code), using
- construction X applied to Ce(16) ⊂ Ce(10) [i] based on
- linear OA(5127, 1953180, F5, 15) (dual of [1953180, 1953053, 16]-code), using Gilbert–Varšamov bound and bm = 5127 > Vbs−1(k−1) = 36 207681 625874 631001 313128 268883 169293 128233 970957 770132 602940 323826 140653 748496 935325 [i]
- linear OA(51, 2, F5, 1) (dual of [2, 1, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(51, s, F5, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(5129, 976591, F5, 2, 17) (dual of [(976591, 2), 1953053, 18]-NRT-code) | [i] | OOA Folding |