Information on Result #1324360
Linear OA(8144, 262192, F8, 26) (dual of [262192, 262048, 27]-code), using construction X with Varšamov bound based on
- linear OA(8143, 262190, F8, 26) (dual of [262190, 262047, 27]-code), using
- construction X applied to Ce(25) ⊂ Ce(18) [i] based on
- linear OA(8133, 262144, F8, 26) (dual of [262144, 262011, 27]-code), using an extension Ce(25) of the primitive narrow-sense BCH-code C(I) with length 262143 = 86−1, defining interval I = [1,25], and designed minimum distance d ≥ |I|+1 = 26 [i]
- linear OA(897, 262144, F8, 19) (dual of [262144, 262047, 20]-code), using an extension Ce(18) of the primitive narrow-sense BCH-code C(I) with length 262143 = 86−1, defining interval I = [1,18], and designed minimum distance d ≥ |I|+1 = 19 [i]
- linear OA(810, 46, F8, 6) (dual of [46, 36, 7]-code), using
- discarding factors / shortening the dual code based on linear OA(810, 74, F8, 6) (dual of [74, 64, 7]-code), using
- a “GraX†code from Grassl’s database [i]
- discarding factors / shortening the dual code based on linear OA(810, 74, F8, 6) (dual of [74, 64, 7]-code), using
- construction X applied to Ce(25) ⊂ Ce(18) [i] based on
- linear OA(8143, 262191, F8, 25) (dual of [262191, 262048, 26]-code), using Gilbert–Varšamov bound and bm = 8143 > Vbs−1(k−1) = 3 435443 037854 812636 641920 945272 293024 945524 349056 170519 059767 000372 444226 177916 617673 221148 183325 674578 005394 178780 546673 890822 [i]
- linear OA(80, 1, F8, 0) (dual of [1, 1, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(80, s, F8, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(8144, 262192, F8, 2, 26) (dual of [(262192, 2), 524240, 27]-NRT-code) | [i] | Embedding of OOA with Gilbert–Varšamov Bound | |
2 | Linear OOA(8144, 262192, F8, 3, 26) (dual of [(262192, 3), 786432, 27]-NRT-code) | [i] | ||
3 | Digital (118, 144, 262192)-net over F8 | [i] | ||
4 | Linear OOA(8144, 131096, F8, 2, 26) (dual of [(131096, 2), 262048, 27]-NRT-code) | [i] | OOA Folding |