Information on Result #1324396
Linear OA(9145, 4783023, F9, 22) (dual of [4783023, 4782878, 23]-code), using construction X with Varšamov bound based on
- linear OA(9144, 4783021, F9, 22) (dual of [4783021, 4782877, 23]-code), using
- construction X applied to Ce(21) ⊂ Ce(14) [i] based on
- linear OA(9134, 4782969, F9, 22) (dual of [4782969, 4782835, 23]-code), using an extension Ce(21) of the primitive narrow-sense BCH-code C(I) with length 4782968 = 97−1, defining interval I = [1,21], and designed minimum distance d ≥ |I|+1 = 22 [i]
- linear OA(992, 4782969, F9, 15) (dual of [4782969, 4782877, 16]-code), using an extension Ce(14) of the primitive narrow-sense BCH-code C(I) with length 4782968 = 97−1, defining interval I = [1,14], and designed minimum distance d ≥ |I|+1 = 15 [i]
- linear OA(910, 52, F9, 6) (dual of [52, 42, 7]-code), using
- a “Gra†code from Grassl’s database [i]
- construction X applied to Ce(21) ⊂ Ce(14) [i] based on
- linear OA(9144, 4783022, F9, 21) (dual of [4783022, 4782878, 22]-code), using Gilbert–Varšamov bound and bm = 9144 > Vbs−1(k−1) = 18 608177 980571 879827 221674 954233 297066 333156 919736 490850 021034 723850 720037 318690 111813 017805 434468 482909 554698 572333 355030 014677 537001 [i]
- linear OA(90, 1, F9, 0) (dual of [1, 1, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(90, s, F9, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(9145, 4783023, F9, 2, 22) (dual of [(4783023, 2), 9565901, 23]-NRT-code) | [i] | Embedding of OOA with Gilbert–Varšamov Bound | |
2 | Linear OOA(9145, 4783023, F9, 3, 22) (dual of [(4783023, 3), 14348924, 23]-NRT-code) | [i] | ||
3 | Digital (123, 145, 4783023)-net over F9 | [i] |