Information on Result #1361740
Linear OOA(232, 86, F2, 2, 9) (dual of [(86, 2), 140, 10]-NRT-code), using OOA 2-folding based on linear OA(232, 172, F2, 9) (dual of [172, 140, 10]-code), using
- adding a parity check bit [i] based on linear OA(231, 171, F2, 8) (dual of [171, 140, 9]-code), using
- a “Gra†code from Grassl’s database [i]
Mode: Linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(2239, 4194387, F2, 2, 18) (dual of [(4194387, 2), 8388535, 19]-NRT-code) | [i] | (u, u+v)-Construction for OOAs | |
2 | Linear OOA(2240, 4194387, F2, 2, 19) (dual of [(4194387, 2), 8388534, 20]-NRT-code) | [i] | ||
3 | Linear OOA(232, 86, F2, 3, 9) (dual of [(86, 3), 226, 10]-NRT-code) | [i] | Embedding of OOA with Gilbert–Varšamov Bound | |
4 | Linear OOA(232, 86, F2, 4, 9) (dual of [(86, 4), 312, 10]-NRT-code) | [i] | ||
5 | Linear OOA(232, 86, F2, 5, 9) (dual of [(86, 5), 398, 10]-NRT-code) | [i] | ||
6 | Linear OOA(232, 86, F2, 6, 9) (dual of [(86, 6), 484, 10]-NRT-code) | [i] | ||
7 | Linear OOA(232, 86, F2, 7, 9) (dual of [(86, 7), 570, 10]-NRT-code) | [i] | ||
8 | Linear OOA(232, 86, F2, 8, 9) (dual of [(86, 8), 656, 10]-NRT-code) | [i] |