Information on Result #1568399

Linear OOA(2238, 2796272, F2, 3, 18) (dual of [(2796272, 3), 8388578, 19]-NRT-code), using (u, u+v)-construction based on
  1. linear OOA(231, 71, F2, 3, 9) (dual of [(71, 3), 182, 10]-NRT-code), using
    • embedding of OOA with Gilbert–VarÅ¡amov bound [i] based on linear OOA(231, 71, F2, 2, 9) (dual of [(71, 2), 111, 10]-NRT-code), using
      • OOA 2-folding [i] based on linear OA(231, 142, F2, 9) (dual of [142, 111, 10]-code), using
        • discarding factors / shortening the dual code based on linear OA(231, 143, F2, 9) (dual of [143, 112, 10]-code), using
          • construction XX applied to C1 = C({0,1,3,63}), C2 = C([0,5]), C3 = C1 + C2 = C([0,3]), and C∩ = C1 ∩ C2 = C({0,1,3,5,63}) [i] based on
            1. linear OA(222, 127, F2, 7) (dual of [127, 105, 8]-code), using the primitive cyclic code C(A) with length 127 = 27−1, defining set A = {0,1,3,63}, and minimum distance d ≥ |{−2,−1,…,4}|+1 = 8 (BCH-bound) [i]
            2. linear OA(222, 127, F2, 7) (dual of [127, 105, 8]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 127 = 27−1, defining interval I = [0,5], and designed minimum distance d ≥ |I|+1 = 8 [i]
            3. linear OA(229, 127, F2, 9) (dual of [127, 98, 10]-code), using the primitive cyclic code C(A) with length 127 = 27−1, defining set A = {0,1,3,5,63}, and minimum distance d ≥ |{−2,−1,…,6}|+1 = 10 (BCH-bound) [i]
            4. linear OA(215, 127, F2, 5) (dual of [127, 112, 6]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 127 = 27−1, defining interval I = [0,3], and designed minimum distance d ≥ |I|+1 = 6 [i]
            5. linear OA(21, 8, F2, 1) (dual of [8, 7, 2]-code), using
            6. linear OA(21, 8, F2, 1) (dual of [8, 7, 2]-code) (see above)
  2. linear OOA(2207, 2796201, F2, 3, 18) (dual of [(2796201, 3), 8388396, 19]-NRT-code), using
    • OOA 3-folding [i] based on linear OA(2207, large, F2, 18) (dual of [large, large−207, 19]-code), using
      • the primitive narrow-sense BCH-code C(I) with length 8388607 = 223−1, defining interval I = [1,18], and designed minimum distance d ≥ |I|+1 = 19 [i]

Mode: Linear.

Optimality

Show details for fixed k and m, k and s, k and t, m and s, m and t.

Other Results with Identical Parameters

None.

Depending Results

None.