Information on Result #1762170
Digital (91, 106, 29539)-net over F3, using embedding of OOA with Gilbert–Varšamov bound based on linear OOA(3106, 29539, F3, 2, 15) (dual of [(29539, 2), 58972, 16]-NRT-code), using
- OOA 2-folding [i] based on linear OA(3106, 59078, F3, 15) (dual of [59078, 58972, 16]-code), using
- construction X with Varšamov bound [i] based on
- linear OA(3102, 59072, F3, 15) (dual of [59072, 58970, 16]-code), using
- construction X4 applied to C([0,7]) ⊂ C([0,6]) [i] based on
- linear OA(3101, 59050, F3, 15) (dual of [59050, 58949, 16]-code), using the expurgated narrow-sense BCH-code C(I) with length 59050 | 320−1, defining interval I = [0,7], and minimum distance d ≥ |{−7,−6,…,7}|+1 = 16 (BCH-bound) [i]
- linear OA(381, 59050, F3, 13) (dual of [59050, 58969, 14]-code), using the expurgated narrow-sense BCH-code C(I) with length 59050 | 320−1, defining interval I = [0,6], and minimum distance d ≥ |{−6,−5,…,6}|+1 = 14 (BCH-bound) [i]
- linear OA(321, 22, F3, 21) (dual of [22, 1, 22]-code or 22-arc in PG(20,3)), using
- dual of repetition code with length 22 [i]
- linear OA(31, 22, F3, 1) (dual of [22, 21, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(31, s, F3, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
- construction X4 applied to C([0,7]) ⊂ C([0,6]) [i] based on
- linear OA(3102, 59074, F3, 12) (dual of [59074, 58972, 13]-code), using Gilbert–Varšamov bound and bm = 3102 > Vbs−1(k−1) = 1 567074 339328 600727 949003 694614 956849 732810 591491 [i]
- linear OA(32, 4, F3, 2) (dual of [4, 2, 3]-code or 4-arc in PG(1,3)), using
- extended Reed–Solomon code RSe(2,3) [i]
- Hamming code H(2,3) [i]
- Simplex code S(2,3) [i]
- the Tetracode [i]
- linear OA(3102, 59072, F3, 15) (dual of [59072, 58970, 16]-code), using
- construction X with Varšamov bound [i] based on
Mode: Linear.
Optimality
Show details for fixed k and m, k and s, k and t, m and s, m and t, t and s.
Other Results with Identical Parameters
None.
Depending Results
None.