Information on Result #1781984
Digital (185, 225, 16442)-net over F4, using embedding of OOA with Gilbert–Varšamov bound based on linear OA(4225, 16442, F4, 40) (dual of [16442, 16217, 41]-code), using
- construction X with Varšamov bound [i] based on
- linear OA(4224, 16440, F4, 40) (dual of [16440, 16216, 41]-code), using
- construction X applied to C([0,20]) ⊂ C([0,16]) [i] based on
- linear OA(4211, 16385, F4, 41) (dual of [16385, 16174, 42]-code), using the expurgated narrow-sense BCH-code C(I) with length 16385 | 414−1, defining interval I = [0,20], and minimum distance d ≥ |{−20,−19,…,20}|+1 = 42 (BCH-bound) [i]
- linear OA(4169, 16385, F4, 33) (dual of [16385, 16216, 34]-code), using the expurgated narrow-sense BCH-code C(I) with length 16385 | 414−1, defining interval I = [0,16], and minimum distance d ≥ |{−16,−15,…,16}|+1 = 34 (BCH-bound) [i]
- linear OA(413, 55, F4, 6) (dual of [55, 42, 7]-code), using
- discarding factors / shortening the dual code based on linear OA(413, 63, F4, 6) (dual of [63, 50, 7]-code), using
- the primitive expurgated narrow-sense BCH-code C(I) with length 63 = 43−1, defining interval I = [0,5], and designed minimum distance d ≥ |I|+1 = 7 [i]
- discarding factors / shortening the dual code based on linear OA(413, 63, F4, 6) (dual of [63, 50, 7]-code), using
- construction X applied to C([0,20]) ⊂ C([0,16]) [i] based on
- linear OA(4224, 16441, F4, 39) (dual of [16441, 16217, 40]-code), using Gilbert–Varšamov bound and bm = 4224 > Vbs−1(k−1) = 39 637509 447789 024412 137436 951917 161835 935726 781549 691003 839799 715540 415922 004542 578898 489367 429927 129172 658550 707372 492455 369864 048061 [i]
- linear OA(40, 1, F4, 0) (dual of [1, 1, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(40, s, F4, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(4224, 16440, F4, 40) (dual of [16440, 16216, 41]-code), using
Mode: Linear.
Optimality
Show details for fixed k and m, k and s, k and t, m and s, m and t, t and s.
Other Results with Identical Parameters
None.
Depending Results
None.