Information on Result #1789817
Digital (32, 50, 387)-net over F7, using embedding of OOA with Gilbert–Varšamov bound based on linear OA(750, 387, F7, 18) (dual of [387, 337, 19]-code), using
- 35 step Varšamov–Edel lengthening with (ri) = (2, 0, 0, 0, 1, 9 times 0, 1, 20 times 0) [i] based on linear OA(746, 348, F7, 18) (dual of [348, 302, 19]-code), using
- construction XX applied to C1 = C([341,15]), C2 = C([0,16]), C3 = C1 + C2 = C([0,15]), and C∩ = C1 ∩ C2 = C([341,16]) [i] based on
- linear OA(743, 342, F7, 17) (dual of [342, 299, 18]-code), using the primitive BCH-code C(I) with length 342 = 73−1, defining interval I = {−1,0,…,15}, and designed minimum distance d ≥ |I|+1 = 18 [i]
- linear OA(743, 342, F7, 17) (dual of [342, 299, 18]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 342 = 73−1, defining interval I = [0,16], and designed minimum distance d ≥ |I|+1 = 18 [i]
- linear OA(746, 342, F7, 18) (dual of [342, 296, 19]-code), using the primitive BCH-code C(I) with length 342 = 73−1, defining interval I = {−1,0,…,16}, and designed minimum distance d ≥ |I|+1 = 19 [i]
- linear OA(740, 342, F7, 16) (dual of [342, 302, 17]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 342 = 73−1, defining interval I = [0,15], and designed minimum distance d ≥ |I|+1 = 17 [i]
- linear OA(70, 3, F7, 0) (dual of [3, 3, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(70, s, F7, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(70, 3, F7, 0) (dual of [3, 3, 1]-code) (see above)
- construction XX applied to C1 = C([341,15]), C2 = C([0,16]), C3 = C1 + C2 = C([0,15]), and C∩ = C1 ∩ C2 = C([341,16]) [i] based on
Mode: Linear.
Optimality
Show details for fixed k and m, k and s, k and t, m and s, m and t, t and s.
Other Results with Identical Parameters
None.
Depending Results
None.