Information on Result #1791972
Digital (31, 46, 809)-net over F8, using embedding of OOA with Gilbert–Varšamov bound based on linear OA(846, 809, F8, 15) (dual of [809, 763, 16]-code), using
- 286 step Varšamov–Edel lengthening with (ri) = (2, 5 times 0, 1, 26 times 0, 1, 57 times 0, 1, 86 times 0, 1, 107 times 0) [i] based on linear OA(840, 517, F8, 15) (dual of [517, 477, 16]-code), using
- construction XX applied to C1 = C([510,12]), C2 = C([0,13]), C3 = C1 + C2 = C([0,12]), and C∩ = C1 ∩ C2 = C([510,13]) [i] based on
- linear OA(837, 511, F8, 14) (dual of [511, 474, 15]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {−1,0,…,12}, and designed minimum distance d ≥ |I|+1 = 15 [i]
- linear OA(837, 511, F8, 14) (dual of [511, 474, 15]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 511 = 83−1, defining interval I = [0,13], and designed minimum distance d ≥ |I|+1 = 15 [i]
- linear OA(840, 511, F8, 15) (dual of [511, 471, 16]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {−1,0,…,13}, and designed minimum distance d ≥ |I|+1 = 16 [i]
- linear OA(834, 511, F8, 13) (dual of [511, 477, 14]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 511 = 83−1, defining interval I = [0,12], and designed minimum distance d ≥ |I|+1 = 14 [i]
- linear OA(80, 3, F8, 0) (dual of [3, 3, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(80, s, F8, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(80, 3, F8, 0) (dual of [3, 3, 1]-code) (see above)
- construction XX applied to C1 = C([510,12]), C2 = C([0,13]), C3 = C1 + C2 = C([0,12]), and C∩ = C1 ∩ C2 = C([510,13]) [i] based on
Mode: Linear.
Optimality
Show details for fixed k and m, k and s, k and t, m and s, m and t, t and s.
Other Results with Identical Parameters
None.
Depending Results
None.