Information on Result #1807182
Digital (47, 87, 944)-net over F27, using embedding of OOA with Gilbert–Varšamov bound based on linear OA(2787, 944, F27, 40) (dual of [944, 857, 41]-code), using
- 201 step Varšamov–Edel lengthening with (ri) = (5, 0, 1, 4 times 0, 1, 10 times 0, 1, 20 times 0, 1, 36 times 0, 1, 54 times 0, 1, 69 times 0) [i] based on linear OA(2776, 732, F27, 40) (dual of [732, 656, 41]-code), using
- construction XX applied to C1 = C([727,37]), C2 = C([0,38]), C3 = C1 + C2 = C([0,37]), and C∩ = C1 ∩ C2 = C([727,38]) [i] based on
- linear OA(2774, 728, F27, 39) (dual of [728, 654, 40]-code), using the primitive BCH-code C(I) with length 728 = 272−1, defining interval I = {−1,0,…,37}, and designed minimum distance d ≥ |I|+1 = 40 [i]
- linear OA(2774, 728, F27, 39) (dual of [728, 654, 40]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 728 = 272−1, defining interval I = [0,38], and designed minimum distance d ≥ |I|+1 = 40 [i]
- linear OA(2776, 728, F27, 40) (dual of [728, 652, 41]-code), using the primitive BCH-code C(I) with length 728 = 272−1, defining interval I = {−1,0,…,38}, and designed minimum distance d ≥ |I|+1 = 41 [i]
- linear OA(2772, 728, F27, 38) (dual of [728, 656, 39]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 728 = 272−1, defining interval I = [0,37], and designed minimum distance d ≥ |I|+1 = 39 [i]
- linear OA(270, 2, F27, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(270, s, F27, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(270, 2, F27, 0) (dual of [2, 2, 1]-code) (see above)
- construction XX applied to C1 = C([727,37]), C2 = C([0,38]), C3 = C1 + C2 = C([0,37]), and C∩ = C1 ∩ C2 = C([727,38]) [i] based on
Mode: Linear.
Optimality
Show details for fixed k and m, k and s, k and t, m and s, m and t, t and s.
Other Results with Identical Parameters
None.
Depending Results
None.