Information on Result #1808333
Digital (24, 41, 1590)-net over F32, using embedding of OOA with Gilbert–Varšamov bound based on linear OA(3241, 1590, F32, 17) (dual of [1590, 1549, 18]-code), using
- 555 step Varšamov–Edel lengthening with (ri) = (3, 0, 1, 7 times 0, 1, 23 times 0, 1, 71 times 0, 1, 166 times 0, 1, 281 times 0) [i] based on linear OA(3233, 1027, F32, 17) (dual of [1027, 994, 18]-code), using
- construction XX applied to C1 = C([1022,14]), C2 = C([0,15]), C3 = C1 + C2 = C([0,14]), and C∩ = C1 ∩ C2 = C([1022,15]) [i] based on
- linear OA(3231, 1023, F32, 16) (dual of [1023, 992, 17]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {−1,0,…,14}, and designed minimum distance d ≥ |I|+1 = 17 [i]
- linear OA(3231, 1023, F32, 16) (dual of [1023, 992, 17]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 1023 = 322−1, defining interval I = [0,15], and designed minimum distance d ≥ |I|+1 = 17 [i]
- linear OA(3233, 1023, F32, 17) (dual of [1023, 990, 18]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {−1,0,…,15}, and designed minimum distance d ≥ |I|+1 = 18 [i]
- linear OA(3229, 1023, F32, 15) (dual of [1023, 994, 16]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 1023 = 322−1, defining interval I = [0,14], and designed minimum distance d ≥ |I|+1 = 16 [i]
- linear OA(320, 2, F32, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(320, s, F32, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(320, 2, F32, 0) (dual of [2, 2, 1]-code) (see above)
- construction XX applied to C1 = C([1022,14]), C2 = C([0,15]), C3 = C1 + C2 = C([0,14]), and C∩ = C1 ∩ C2 = C([1022,15]) [i] based on
Mode: Linear.
Optimality
Show details for fixed k and m, k and s, k and t, m and s, m and t, t and s.
Other Results with Identical Parameters
None.
Depending Results
None.